Rigidity of Determinantal Point Processes with the Airy, the Bessel and the Gamma Kernel - Archive ouverte HAL
Article Dans Une Revue Bulletin of Mathematical Sciences Année : 2016

Rigidity of Determinantal Point Processes with the Airy, the Bessel and the Gamma Kernel

Résumé

A point process is said to be rigid if for any bounded domain in the phase space, the number of particles in the domain is almost surely determined by the restriction of the configuration to the complement of our bounded domain. The main result of this paper is that determinantal point processes with the Airy, the Bessel and the Gamma kernels are rigid. The proof follows the scheme of Ghosh [6], Ghosh and Peres [7]: the main step is the construction of a sequence of additive statistics with variance going to zero.
Fichier principal
Vignette du fichier
Rigid_Airy_Bessel_Gamma.pdf (107.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01256037 , version 1 (14-01-2016)

Identifiants

Citer

Alexander I. Bufetov. Rigidity of Determinantal Point Processes with the Airy, the Bessel and the Gamma Kernel. Bulletin of Mathematical Sciences, 2016, 6 (1), pp.163 - 172. ⟨10.1007/s13373-015-0080-z⟩. ⟨hal-01256037⟩
289 Consultations
125 Téléchargements

Altmetric

Partager

More