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RIGIDITY OF DETERMINANTAL POINT PROCESSES WITH
THE AIRY, THE BESSEL AND THE GAMMA KERNEL

ALEXANDER I. BUFETOV

ABSTRACT. A point process is said to bgid if for any bounded do-
main in the phase space, the number of particles in the damalmost
surely determined by the restriction of the configuratiothi® comple-
ment of our bounded domain. The main result of this paperasde-
terminantal point processes with the Airy, the Bessel ardGamma
kernels are rigid. The proof follows the scheme of Ghash &@jpsh
and Peres |7]: the main step is the construction of a sequeracisitive
statistics with variance going to zero.

1. INTRODUCTION.

1.1. Rigid Point Processes.Let M be a complete separable metric space.
Recall that aconfigurationon M is a purely atomic Radon measure on
M; in other words, a collection of particles considered withaegard to
order and not admitting accumulation pointslih The space Coif/) of
configurations o/ is itself a complete separable metric space with respect
to the vague topology on the space of Radon measures. A goiceéss on
M is by definition a Borel probability measure on Cabf).

Given a bounded subsét C M and a configurationlX € Conf()M),
let #5(X) stand for the number of particles of lying in B. Given a
Borel subset” C M, we letF. be thes-algebra generated by all random
variables of the form#z, B C C. If P is a point process o, then we
write F¢, for the P-completion ofFc.

The following definition of rigidity of a point process is dt@Ghosh([6]
(cf. also Ghosh and Peres [7]).

Definition. A point processP on M is calledrigid if for any bounded
Borel subse3 C M the random variablét; is I, ;-measurable.

Let 1 be ac-finite Borel probability measure oR, and letll(z,y) be
the kernel of a locally trace-class operator of orthogomajgetion acting
in Ly(R, 1). Recall that the determinantal point proc®gsis a Borel prob-
ability measure orConf(RR) defined by the condition that for any bounded

measurable functiog, for whichg — 1 is supported in a bounded st we
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have
1) Ep, U, = det (1 + (g — 1)HXB)-

The Fredholm determinant inl(1) is well-defined sifites locally of tracel
class. The equatiofl(1) determines the meaBgraniquely. For any pair-
wise disjoint bounded Borel sef3;,..., B, C R and anyz;,...,z € C
from (I) we have

l
EPHZféBl ... Z#Bl — det (1 —|— Z(Z] — 1)XBJHXusz> .
7j=1

For further results and background on determinantal paiotgsses, see
e.g. [2], [10], [12], [13], [177, [18],[19].

We now formulate a sufficient condition for the rigidity of atédrminan-
tal point process oRR.

Proposition 1.1. LetU C R be an open subset, Igtbe the Lebesgue mea-
sure onU, and letll(z,y) be a kernel yielding an operator of orthogonal
projection acting inL, (R, 1). Assume that there existse (0,1/2), ¢ > 0,
and, for anyR > 0, a constantC'(R) > 0 such that the following holds:

(1) if |z|, |y| > R, then
(x/y)* + (y/x)"

I

[H(z, y)| < C(R) -

|z =yl
(2) if |x| < R, then for ally we have
C(R)
2
| e wPaue < S50

z:|z|<R
Then the point proces? is rigid.

As we shall see below, Propositibn11.1 implies rigidity feterminantal
point processes with the Airy and the Bessel kernels; in &lsé $ubsec-
tion of the paper, we shall obtain a counterpart of Propmsifi.1 for de-
terminantal point processes with discrete phase spaceaants corollary,
rigidity for the determinantal point process with the Gamkaenel.

Remark. As far as | know, rigidity of point processes first appearsigm
a different name) in the work of Holroyd and Soo [9], who ebthied, in
particular, that the determinantal point process with teegBian kernel is
notrigid. For the sine-process, rigidity is due to Ghash [6]r & Ginibre
ensemble, rigidity has been established by Ghosh and P&resef also
Osada and Shirai [16].
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1.2. Additive Functionals and Rigidity. Given a bounded measurable func-
tion f on M, we introduce the additive functional; on Conf(M) by the

formula
S(X) =Y J(@).
zeX
We recall the sufficient condition for rigidity of a point mess given by

Ghosh[[6], Ghosh and Peres [7].

Proposition 1.2(Ghosh [6], Ghosh and Peres [.7])etP be a Borel prob-
ability measure orConf (M ). Assume that for any > 0 and any bounded
subsetB C M there exists a bounded measurable functfoaf bounded
support such thaf = 1 on B and VarpS; < . Then the measurg is
rigid.

Proof. For the reader’s convenience, we recall the elegant shodf pr
of Ghosh [6], Ghosh and Perés [7]. LBt be an increasing sequence of
nested bounded Borel sets exhaustirig Our assumptions and the Borel-
Cantelli Lemma imply the existence of a sequence of boundeasaorable
function f™ of bounded support, such th#t”|,., = 1 and that forP-
almost everyX € Conf(M) we have

lim Sy (X) = EpSym = 0.
Since, for any boundef and sufficiently large:, we have
Sy (X) = #5(X) + S0 (X)),
we thus obtain the equality
#5(X) = Hm (=Spoy,, ,(X) + ESpw),

for P-almost everyX, and the rigidity ofP is proved.

Remark. In fact, to prove rigidity, it suffices that the functigfonly
satisfy the inequalityf — 1| < ¢ on B; the proof of the proposition becomes
slightly more involved, but the result is still valid.

1.3. Variance of Additive Functionals. We next recall that if; is ao-
finite Borel measure oM/ andP is a determinantal point process induced
by a locally trace class operatdrr of orthogonal projection acting in the
spacelL, (M, ), then the variance of an additive functiorsgl correspond-
ing to a bounded measurable functipnf bounded support, is given by the
formula

@  Vasy =5 [ [ 1) = WP e ) Pduta)duty).

M M
It therefore suffices, in order to establish the rigiditylod point procesBy;,
to find an increasing sequence of bounded Borel suli&étexhaustingl/
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and a sequencg™ of bounded Borel functions of bounded support such
that ™| = 1 and

lim / / £ (&) — £ () P, ) Pdpu( ) dpa(y) = 0.

n—00
M M

2. RIGIDITY IN THE CONTINUOUS CASE.
2.1. Proof of Proposition[1.1. TakeR > 0, T > R and set

log* (|2] — B)
———— ~if 2| < T,
o B0 (@) = 41T Togir—q) 1 1@
0,|z] > T.

To establish Propositidn 1.1, it suffices to prove

Lemma 2.1. If IT satisfies the assumptions of Proposifiofi then, for any
sufficiently largeRz > 0, asT' — oo we haveVarp, S, r.r) — 0.

Proof. We estimate the double integirial (2) for the addittatistic f =
o1 Of course, if|z|,|y| < R orif |z|,|y| > T, then the expression
under the integral sign is equal to zero. We will now estinmaieintegral
over the domain

{r,yeR*: R < |z|,|y| < T}

and complete the proof by estimating the smaller contrdsudf the do-
mains

{r,yeR*:0< 2| <T < |y}, {r,y e R*: 0 < |z| < R < |y| < o0}

We consider these three cases separately.

The First Casez,y € R? : R < |z|,|y| < T.

It is clear that for anyr, y satisfying|z|, |y| > R there exists a constant
C'(R) depending only o such that we have

[log™ (Jz| = R) —log"(|y| = R)| < C(R)|log|z| —log |y]].

Using the first assumption of Propositiodl.1, we now estntla¢ inte-
gral (2) for the additive statisti¢ = »(*T) from above by the expression

const logx—logy x2e g2e
(3) lOgT //< ) (yﬂ“‘ﬁ dl’d’y,

where the implied constant depends only ®n Introducing the variable
= y/x and recalling thatv < 1/2, we estimate the integrdll(3) from
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above by the expression

const dz log A %0 \—2a\ 1y _1
(4) log T2 / /< ) (A + A7) dA = O (log™' T) .

The Second Case,y € R?: |z| > R, |y| > T.
Next, we consider the integral

/de 7( WD () (I(x, ) dy,

which (upon recalling that < y and making a scaling change of variable)
can be estimated from above by the expression

const logz 9
d — +1 dy = O(1 T).
long/ x/( " )( —y) v = Oloe =)

The Third Case{z,y € R?: 0 < |z| < R < |y| < oo}.
Finally, we consider the integral

R oS
/ dz / (G BD (y) — 12 (T1(z, y))*dy.
0 R

in order to estimate which it suffices to estimate the integra

/Rdfﬂ ]O(log+(y — R))*(I(z,y))*dy

which, using the second assumption of Propositioh 1.1, wimnate from
above by the expression

const [ (logy)? s
dy = O(1 T).
o [ SRy~ oot )

where the implied constant, as always, depends onl.ohhe proposition
is proved completely.

2.2. The case of integrable kernels.In applications, one often meets ker-
nels admitting amtegrablerepresentation
A(x)B(y) — B(x)A(y)

(5) I(z,y) = pra—y ;
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with smooth functionsd, B; the diagonal values of the kernidlare given
by the formula
(6) (z,2) = A'(x)B(z) — A(z)B'(2).
In this case, Propositidn 1.1 yields the following

Corollary 2.2. If the kernelll admits an integrable representatids) @nd,
furthermore, there exisk > 0, C' > 0 ande > 0 such that

(1) forall |z| < Rwe havgA(z)| < Olz|~Y/2+; |B(x)| < Cla|~V/?*e,

(2) for all |z| > Rwe haveA(z)| < C|z|'/?7¢; |B(z)| < C|z|'/?72,
then the procesBy; is rigid.

Proof. Indeed, it is clear that both assumptions of Projprsii.1 are
verified in this case.

3. EXAMPLES: THE BESSEL AND THEAIRY KERNEL.

3.1. The determinantal point process with the Bessel kernelTakes >
—1 and recall that the Bessel kernel is given by the formula

J (IL’ y) _ \/Ejs—i-l(ﬁ)‘]s(\/@) - \/@Js—i-l(\/g)‘]s(\/i)
o 2(z —y) ’
By the Macchi-Soshnikov theorem, the Bessel kernel indaackserminan-
tal point proces®;, on Conf(R ).

x,y > 0.

Proposition 3.1. The determinantal point proce8y. is rigid.

Proof. Indeed, this follows from Corollaky 2.2, the estimaf(x) ~ /2,
valid for smallx (cf. e.g. 9.1.10 in in Abramowitz and Stegun [1]) and the
standard asymptotic expansion

Js(x) = \/gcos(x —sm/2 —7/4) + O(z™)

of the Bessel function of a large argument (cf. e.g. 9.2.1 mafnowitz
and Steguni [1]). Proposition 3.1 is proved.

3.2. The determinantal point process with the Airy kernel. Recall that
the Airy kernel is given by the formula
Ai(z, y) = Ai(x)Ai'(y) — Ai(y)Ai (x)7
r—y

where
—+o0

, 1 ¢
Ai(x) = = [ cos 3 +at | dt
T

0
is the standard Airy function.
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By the Macchi-Soshnikov theorem, the Airy kernel infucesesedmi-
nantal point procesB,; on Conf(R). In this case, we establish rigidity in
the following slightly stronger form.

Proposition 3.2. For any D € R, the random variablé# p ) is measur-
able with respect to thE 5;-completion of the sigma-algebtg_ . p).

Proof. Again, we také? > 0, T > R and set
0, for x < =T
log™ (|| — R)

log(T' — R)
1, forx > —R.

cp(R’T) (x) = Jfor —T <x < —R;

SincelP4;-almost every trajectory admits only finitely many partsctan the
positive semi-axis, the additive functionsyr, is Px;-almost surely well-
defined. It is immediate froni(2) that its variance is finite.

Lemma 3.3. For any fixedR > 0, asT" — oo, we haveVarS, .z — 0.

The proof of Lemma&_3]3 is done in exactly the same way as tHatayfo-
sition[1.1 and Corollariy 212 , using standard power estimfdethe Airy
function and its derivative for negative values of the argaim(cf. e.g.
10.4.60, 10.4.62 in Abramowitz and Stegln [1]) as well assthaedard su-
perexponential estimates for the Airy function and its\ive for positive
values of the argument (cf. e.g. 10.4.59, 10.4.61 in Abraitzaand Stegun
[1]). Propositior 3.R follows immediately.

4. RIGIDITY OF DETERMINANTAL POINT PROCESSES WITH DISCRETE
PHASE SPACE

4.1. A general sufficient condition. Propositior 1.1l admits a direct ana-
logue in the case of a discrete phase space.

Proposition 4.1. LetII(x, y) be a kernel yielding an operator of orthogonal
projection acting inLy(Z). Assume that there existsc (0,1/2),e > 0,
and, for anyR > 0, a constantC'(R) > 0 such that the following holds:

(1) if ||, |y| > R, then

T Ol_|_ T (0%
(2, )| < O(r) - LTI,
|z —y|
(2) if |x| < R, then for ally we have

S M y)P < SH)

14+€”
z:|z|<R 1+ Y

Then the point proces? is rigid.
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The proof is exactly the same as that of Propositioh 1.1. ToweI@ry
for integrable kernels assumes an even simpler form in eretie case.

Corollary 4.2. If the kernelll admits an integrable representatidb) @nd,
furthermore, there exisk > 0, C' > 0 ande > 0 such that for all|z| > R
we have

|[A(z)| < Cla] /275, |B(x)] < Cla]?7,
then the procesBy; is rigid.

4.2. The determinantal point process with the Gamma-kernel.LetZ' =
1/2+4Z be the set ohalf-integers The Gamma-kernel with parameters’
is defined orZ’ x Z' by the formula

sin(mz) sin(mrz’)

() Tex(ony) = T8 m G 2)

T(x+2z+1/2)0(x+ 2 +1/2)T(y+ 2+ 1/2)T(y + 2/ + 1/2)) " /?x
Fe+z+1/2)(y+2+1/2) —T(e+2+1/2)['(y+2+1/2)
T —y '

Following Borodin and Olshanski (cf. Proposition 1.8[in)[3ke consider
two cases: first, the case of tpencipal series, where’ = z ¢ R and
the case of the complementary series, in whicH are real and, moreover,
there exists an integen such that:, 2’ € (m,m + 1). In both these cases,
the Gamma-kernel induces an operator of orthogonal piojeetcting in
Lo(Z"). We now establish the rigidity of the corresponding deteantal
measuréP’r__, on Conf(Z'). We use Corollary 412. In the case of the prin-
cipal series, the functions, B giving the integrable representation for the
Gamma-kernel, are bounded above, so there is nothing te phothe case
of the complementary series, the standard asymptotics

P(‘T + Z) z—2'

[(x+ 2)
(cf. e.g. 6.1.47 in Abramowitz and Stegun [1]) allows us dieto apply
Corollary[2.2 and thus to complete the proof of

Proposition 4.3. The determinantal point process with the Gamma-kernel
is rigid for all values of the parametets =z’ belonging to the principal and
the complementary series.
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