Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon

Résumé

Mapping croplands is a challenging problem in a context of climate change and evolving agricultural calendars. Classification based on MODIS vegetation index time series is performed in order to map crop types in the Brazilian state of Mato Grosso. We used the recently developed Dense Bag-of-Temporal-SIFT-Words algorithm, which is able to capture temporal locality of the data. It allows the accurate detection of around 70% of the agricultural areas. It leads to better classification rates than a baseline algorithm, discriminating more accurately classes with similar profiles.

Domaines

Géographie
Fichier principal
Vignette du fichier
main.pdf (861.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01254455 , version 1 (13-01-2016)

Identifiants

  • HAL Id : hal-01254455 , version 1

Citer

Adeline Bailly, Damien Arvor, Laetitia Chapel, Romain Tavenard. Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon. 2016. ⟨hal-01254455⟩
656 Consultations
279 Téléchargements

Partager

More