Double exponential stability of quasi-periodic motion in Hamiltonian systems - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2017

Double exponential stability of quasi-periodic motion in Hamiltonian systems

Résumé

We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems.
Fichier principal
Vignette du fichier
DoubleExpTore10.pdf (175.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01252300 , version 1 (07-01-2016)

Identifiants

Citer

Abed Bounemoura, Bassam Fayad, Laurent Niederman. Double exponential stability of quasi-periodic motion in Hamiltonian systems. Communications in Mathematical Physics, 2017, 350 (1), pp.361-386. ⟨10.1007/s00220-016-2782-9⟩. ⟨hal-01252300⟩
264 Consultations
175 Téléchargements

Altmetric

Partager

More