Fault tolerant controller for a class of additive faults: a quasi-continuous high-order sliding mode approach
Résumé
In this paper a fault tolerant control strategy that combines the backstepping procedure and the quasi-continuous high-order sliding mode controller is proposed. The fault tolerance principle is based on a hierarchical application of the backstepping methodology ensuring the finite time convergence of the desired system states, in spite of the considered fault situations. The additive effect of the faults and disturbances is canceled out by the hierarchical
application of the quasi-continuous controller ensuring fault-tolerance. The effect of Lebesgue measurable noise over the precision of the proposed controller is studied. Simulation results based on a nonlinear model of the F16 jet fighter show the efficiency of the proposed techniques.