Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2017

Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation

Résumé

We show that the initial value problem associated to the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov equation $$ u_t-D_x^\alpha u_{x} + u_{xyy} = uu_x,\quad (t,x,y)\in\R^3,\quad 1\le \alpha\le 2, $$ is locally well-posed in the spaces $E^s$, $s>\frac 2\alpha-\frac 34$, endowed with the norm $ \|f\|_{E^s} = \|\langle |\xi|^\alpha+\mu^2\rangle^s\hat{f}\|_{L^2(\R^2)}. $ As a consequence, we get the global well-posedness in the energy space $E^{1/2}$ as soon as $\alpha>\frac 85$. The proof is based on the approach of the short time Bourgain spaces developed by Ionescu, Kenig and Tataru \cite{IKT} combined with new Strichartz estimates and a modified energy.
Fichier principal
Vignette du fichier
bozk4.pdf (354.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01251033 , version 1 (05-01-2016)

Identifiants

Citer

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems - Series A, 2017, 37 (1), pp.449 - 483. ⟨10.3934/dcds.2017019⟩. ⟨hal-01251033⟩
160 Consultations
135 Téléchargements

Altmetric

Partager

More