Regularity for the optimal compliance problem with length penalization - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2017

Regularity for the optimal compliance problem with length penalization

Résumé

We prove some regularity results for a connected set S in the planar domain O, which minimizes the compliance of its complement O\S, plus its length. This problem, interpreted as to find the best location for attaching a membrane subject to a given external force f so as to minimize the compliance, can be seen as an elliptic PDE version of the average distance problem/irrigation problem (in a penalized version rather than a constrained one), which has been extensively studied in the literature. We prove that minimizers consist of a finite number of smooth curves meeting only by three at 120 degree angles, containing no loop, and possibly touching the boundary of the domain only tangentially. Several new technical tools together with the classical ones are developed for this purpose.
Fichier principal
Vignette du fichier
compl2015.pdf (769.53 Ko) Télécharger le fichier
compl2015.bbl (49 B) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01248284 , version 1 (24-12-2015)
hal-01248284 , version 2 (30-12-2015)
hal-01248284 , version 3 (13-04-2016)

Identifiants

Citer

Antonin Chambolle, Jimmy Lamboley, Antoine Lemenant, Eugene Stepanov. Regularity for the optimal compliance problem with length penalization. SIAM Journal on Mathematical Analysis, 2017. ⟨hal-01248284v3⟩
1392 Consultations
198 Téléchargements

Altmetric

Partager

More