Nonparametric adaptive estimation for grouped data - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Planning and Inference Année : 2017

Nonparametric adaptive estimation for grouped data

Céline Duval
  • Fonction : Auteur
  • PersonId : 947412
Johanna Kappus
  • Fonction : Auteur
  • PersonId : 956563

Résumé

The aim of this paper is to estimate the density f of a random variable X when one has access to independent observations of the sum of K ≥ 2 independent copies of X. We provide a constructive estimator based on a suitable definition of the logarithm of the empirical characteristic function. We propose a new strategy for the data driven choice of the cut-off parameter. The adaptive estimator is proven to be minimax-optimal up to some logarithmic loss. A numerical study illustrates the performances of the method. Moreover, we discuss the fact that the definition of the estimator applies in a wider context than the one considered here.
Fichier principal
Vignette du fichier
DuvalKappus2015Revised.pdf (231.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01245781 , version 1 (17-12-2015)
hal-01245781 , version 2 (03-06-2016)

Identifiants

Citer

Céline Duval, Johanna Kappus. Nonparametric adaptive estimation for grouped data. Journal of Statistical Planning and Inference, 2017, 182, pp.12--28. ⟨10.1016/j.jspi.2016.10.002⟩. ⟨hal-01245781v2⟩
208 Consultations
253 Téléchargements

Altmetric

Partager

More