Accelerated spectral clustering using graph filtering of random signals - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Accelerated spectral clustering using graph filtering of random signals

Résumé

We build upon recent advances in graph signal processing to propose a faster spectral clustering algorithm. Indeed, classical spectral clustering is based on the computation of the first k eigenvectors of the similarity matrix' Laplacian, whose computation cost, even for sparse matrices, becomes prohibitive for large datasets. We show that we can estimate the spectral clustering distance matrix without computing these eigenvectors: by graph filtering random signals. Also, we take advantage of the stochasticity of these random vectors to estimate the number of clusters k. We compare our method to classical spectral clustering on synthetic data, and show that it reaches equal performance while being faster by a factor at least two for large datasets.
Fichier principal
Vignette du fichier
1509.08863v1.pdf (718.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01243682 , version 1 (15-12-2015)
hal-01243682 , version 2 (12-01-2016)

Identifiants

Citer

Nicolas Tremblay, Gilles Puy, Pierre Borgnat, Rémi Gribonval, Pierre Vandergheynst. Accelerated spectral clustering using graph filtering of random signals. 2015. ⟨hal-01243682v1⟩
418 Consultations
448 Téléchargements

Altmetric

Partager

More