Ab Initio Semi-Quantitative Analysis of Micro-Beam Grazing-Incidence Small-Angle X-Ray Scattering (Μ-GISAXS) during Protein Crystal Nucleation and Growth
Résumé
Micro-beam Grazing-Incidence Small-Angle X-ray scattering (μ-GISAXS), exploiting both the advantages of elastic X-ray scattering and the highly focused third-generation synchrotron radiation micro-beams, is an advanced scattering technique that enables scientists to unravel the details of crystal growth processes and to investigate large-scale structures in thin films, including nanobiofilms or other different kinds of surfaces, such as surface gradients or confined surfaces. In this study, we analyze semi-quantitatively and we simulate our previously acquired μ-GISAXS experiments of Thaumatin and Lysozyme Langmuir-Blodgett (LB)-film, shedding light on nucleation and crystal growth processes. Here, we show that, during LB-thin film facilitated nucleation, the particle radius of Thaumatin and of Lysozyme crystal increases while the film thickness reduces. Structural re-organization inside and within the LB-thin film are likely to lead to the crystal nucleation and growth. These semi-quantitative findings are in agreement with the model previously hypothesized. New insights and implications for protein nanocrystallography are also discussed.
Domaines
Matière Condensée [cond-mat]
Fichier principal
ab-initio-semiquantitative-analysis-of-gisaxs-during-protein-crystal-nucleation-and-growth-jpb.1000303.pdf (1.7 Mo)
Télécharger le fichier
Origine | Publication financée par une institution |
---|
Loading...