Operator Calculus Algorithms for Multi-Constrained Paths - Archive ouverte HAL
Article Dans Une Revue International Journal of Mathematics and Computer Science Année : 2015

Operator Calculus Algorithms for Multi-Constrained Paths

Résumé

Classical approaches to multi-constrained routing problems generally require construction of trees and the use of heuristics to prevent combinatorial explosion. Introduced here is the notion of constrained path algebras and their application to multi-constrained path problems. The inherent combinatorial properties of these algebras make them useful for routing problems by implicitly pruning the underlying tree structures. Operator calculus (OC) methods are generalized to multiple non-additive constraints in order to develop algorithms for the multi constrained path problem and multi constrained optimization problem. Theoretical underpinnings are developed first, then algorithms are presented. These algorithms demonstrate the tremendous simplicity, flexibility and speed of the OC approach. Algorithmsare implemented inMathematica and Java and applied to a problem first proposed by Ben Slimane et al. as an example.
Fichier non déposé

Dates et versions

hal-01242868 , version 1 (14-12-2015)

Identifiants

  • HAL Id : hal-01242868 , version 1

Citer

Jamila Ben Slimane, Schott René, Yeqiong Song, George Stacey Staples, Evangelia Tsiontsiou, et al.. Operator Calculus Algorithms for Multi-Constrained Paths . International Journal of Mathematics and Computer Science, 2015, 10 (1). ⟨hal-01242868⟩
199 Consultations
0 Téléchargements

Partager

More