Composition operators on generalized Hardy spaces - Archive ouverte HAL
Article Dans Une Revue Complex Analysis and Operator Theory Année : 2015

Composition operators on generalized Hardy spaces

Résumé

Let $\Omega_1,\Omega_2\subset {\mathbb C}$ be bounded domains. Let $\phi:\Omega_1\rightarrow \Omega_2$ holomorphic in $\Omega_1$ and belonging to $W^{1,\infty}_{\Omega_2}(\Omega_1)$. We study the composition operators $f\mapsto f\circ\phi$ on generalized Hardy spaces on $\Omega_2$, recently considered in \cite{bfl, BLRR}. In particular, we provide necessary and/or sufficient conditions on $\phi$, depending on the geometry of the domains, ensuring that these operators are bounded, invertible, isometric or compact. Some of our results are new even for Hardy spaces of analytic functions.
Fichier principal
Vignette du fichier
Composition-generalized-Hardy-spaces.pdf (277.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01242032 , version 2 (15-10-2013)
hal-01242032 , version 1 (11-12-2015)

Identifiants

Citer

Juliette Leblond, Elodie Pozzi, Emmanuel Russ. Composition operators on generalized Hardy spaces. Complex Analysis and Operator Theory, 2015, 119, pp.354-381. ⟨hal-01242032v2⟩
533 Consultations
846 Téléchargements

Altmetric

Partager

More