Composition operators on generalized Hardy spaces - Archive ouverte HAL
Journal Articles Complex Analysis and Operator Theory Year : 2015

Composition operators on generalized Hardy spaces

Abstract

Let $\Omega_1,\Omega_2\subset {\mathbb C}$ be bounded domains. Let $\phi:\Omega_1\rightarrow \Omega_2$ holomorphic in $\Omega_1$ and belonging to $W^{1,\infty}_{\Omega_2}(\Omega_1)$. We study the composition operators $f\mapsto f\circ\phi$ on generalized Hardy spaces on $\Omega_2$, recently considered in \cite{bfl, BLRR}. In particular, we provide necessary and/or sufficient conditions on $\phi$, depending on the geometry of the domains, ensuring that these operators are bounded, invertible, isometric or compact. Some of our results are new even for Hardy spaces of analytic functions.
Fichier principal
Vignette du fichier
Composition-generalized-Hardy-spaces.pdf (277.67 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01242032 , version 2 (15-10-2013)
hal-01242032 , version 1 (11-12-2015)

Identifiers

Cite

Juliette Leblond, Elodie Pozzi, Emmanuel Russ. Composition operators on generalized Hardy spaces. Complex Analysis and Operator Theory, 2015, 119, pp.354-381. ⟨hal-01242032v2⟩
527 View
836 Download

Altmetric

Share

More