Homogenization near resonances and artificial magnetism in 3D dielectric metamaterials
Abstract
It is now well established that the homogenization of a periodic array of parallel dielectric fibers with suitably scaled high permittivity can lead to a (possibly) negative frequency-dependent effective permeability. However this result based on a two-dimensional approach holds merely in the case of linearly polarized magnetic fields, reducing thus its applications to infinite cylindrical obstacles. In this paper we consider a dielectric structure placed in a bounded domain of $\mathbb{R}^3$ and perform a full 3D asymptotic analysis. The main ingredient is a new averaging method for characterizing the bulk effective magnetic field in the vanishing-period limit. We evidence a vectorial spectral problem on the periodic cell which determines micro-resonances and encodes the oscillating behavior of the magnetic field from which artificial magnetism arises. At a macroscopic level we deduce an effective permeability tensor that we can be make explicit as a function of the frequency. As far as sign-changing permeability are sought after, we may foresee that periodic bulk dielectric inclusions could be an efficient alternative to the very popular metallic split-ring structure proposed by Pendry.
Fichier principal
BouBouFel.pdf (974.91 Ko)
Télécharger le fichier
f4.pdf (45.73 Ko)
Télécharger le fichier
J1_570.pdf (123.41 Ko)
Télécharger le fichier
J1_620.pdf (119.42 Ko)
Télécharger le fichier
J3_376.pdf (81.85 Ko)
Télécharger le fichier
J3_417.pdf (54.26 Ko)
Télécharger le fichier
J3_750.pdf (82.73 Ko)
Télécharger le fichier
muefcube310.pdf (61.57 Ko)
Télécharger le fichier
muefgeoL.pdf (85.37 Ko)
Télécharger le fichier
structure2.pdf (13.12 Ko)
Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...