Simplified modeling of the convection and radiation heat transfers during the infrared heating of PET sheets and preforms Nomenclature - Archive ouverte HAL
Article Dans Une Revue International Polymer Processing Année : 2015

Simplified modeling of the convection and radiation heat transfers during the infrared heating of PET sheets and preforms Nomenclature

Résumé

Initial heating conditions and temperature effects have an important influence during the injection stretch blow molding process of PET preforms. The paper provides a simplified modeling of the infrared (IR) flux provided by the IR lamps and the convection heat transfer with air, for the finite element simulation of the heating of PET samples. This modeling enables fast thermal simulations in industrial context. First, a complete 2D simulation of the air convection around a PET sheet sample is conducted using ANSYS/FLUENT to compute the local convection heat transfer coefficient. The distribution of this coefficient along the PET wall is then interpolated by a best linear fit function of the wall position to provide the boundary condition of the convection heat transfer thereafter. This boundary condition, coupled with the calculation of the infrared flux absorbed by the PET sheet sample, allows a 3D calculation of the time evolution of the sample temperature. This calculation is validated by comparing the experimental temperature distribution of the PET sheet obtained from an IR camera with the numerical results of the simulation. Second, we focus on the modeling of the heating of a cylindrical PET preforms by IR lamps. In our approach, the IR heating flux is calculated using the spectral and surfaceto-surface radiation laws adapted to the sample geometry. The air convection effect around the preform is modeled using the heat transfer coefficient identified from the 2D plane sheet case. It is applied on the boundaries of a simpler model in Comsol where only the preform is meshed. The temperature distribution on the outer surface of the preform is compared to experimental measurements by thermal imaging. A good agreement is observed which validates the whole approach used.
Fichier principal
Vignette du fichier
Int Polymer Processing - Simplified natural Convection - Luo Chevalier Utheza Nicolas.pdf (875.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01238882 , version 1 (08-12-2015)

Identifiants

Citer

Yun Mei Luo, Luc Chevalier, Françoise Utheza, Xavier Nicolas. Simplified modeling of the convection and radiation heat transfers during the infrared heating of PET sheets and preforms Nomenclature. International Polymer Processing, 2015, 30 (5), pp.554-565. ⟨10.3139/217.3092⟩. ⟨hal-01238882⟩
138 Consultations
5370 Téléchargements

Altmetric

Partager

More