Capillary-induced giant elastic dipoles in thin nematic films - Archive ouverte HAL
Article Dans Une Revue Proceedings of the National Academy of Sciences of the United States of America Année : 2015

Capillary-induced giant elastic dipoles in thin nematic films

Résumé

Directed and true self-assembly mechanisms in nematic liquid crystal colloids rely on specific interactions between microparticles and the topological defects of the matrix. Most ordered structures formed in thin nematic cells are thus based on elastic multipoles consisting of a particle and nearby defects. Here, we report, for the first time to our knowledge, the existence of giant elastic dipoles arising from particles dispersed in free nematic liquid crystal films. We discuss the role of capillarity and film thickness on the dimensions of the dipoles and explain their main features with a simple 2D model. Coupling of capillarity with nematic elasticity could offer ways to tune finely the spatial organization of complex colloidal systems.

Dates et versions

hal-01236579 , version 1 (01-12-2015)

Identifiants

Citer

Haifa Jeridi, Mohamed Amine Gharbi, Tahar Othman, Christophe Blanc. Capillary-induced giant elastic dipoles in thin nematic films. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, pp.14771-14776. ⟨10.1073/pnas.1508865112⟩. ⟨hal-01236579⟩
55 Consultations
0 Téléchargements

Altmetric

Partager

More