Well-posedness and stability of a 1D wave equation with saturating distributed input
Résumé
In this paper, it is considered a wave equation with a one-dimensional space variable, which describes the dynamics of string deflection. The slope has a finite length and is attached at both boundaries. It is equipped with a distributed actuator subject to a saturation. By closing the loop with a saturating input proportional to the speed of the deformation, it is thus obtained a nonlinear partial differential equation, which is the generalization of the classical 1D wave equation. The well-posedness is proven by using nonlinear semigroups technics. The asymptotic stability of the closed-loop system, when the tuning parameter has a suitable sign, is proven by Lyapunov technics and a sector condition describing the saturating input.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...