Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2π - Archive ouverte HAL
Article Dans Une Revue Journal of Geometry Année : 2016

Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2π

Résumé

We prove the existence of a global smooth Chebyshev net on complete, simply connected surfaces when the total absolute curvature is bounded by 2π. Following Samelson and Dayawansa, we look at Chebyshev nets given by a dual curve, splitting the surface into two connected half-surfaces, and a distribution of angles along it. An analogue to the Hazzidakis formula is used to control the angles of the net on each half-surface with the integral of the Gaussian curvature of this half-surface and the Cauchy boundary conditions. We can then prove the main result using a theorem about splitting the Gaussian curvature with a geodesic, obtained by Bonk and Lang.
Fichier principal
Vignette du fichier
note.pdf (282.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01233113 , version 1 (14-02-2016)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01233113 , version 1

Citer

Yannick Masson, Laurent Monasse. Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2π. Journal of Geometry, 2016. ⟨hal-01233113⟩
193 Consultations
604 Téléchargements

Partager

More