Poincaré’s Equations for Cosserat Media: Application to Shells
Résumé
In 1901 Henri Poincaré discovered a new set of equations for mechanics. These equations are a generalization of Lagrange's equations for a system whose configuration space is a Lie group which is not necessarily commutative. Since then, this result has been extensively refined through the Lagrangian reduction theory. In the present contribution, we extend these equations from classical mechanical systems to continuous Cosserat media, i.e. media in which the usual point particles are replaced by small rigid bodies, called micro-structures. In particular, we will see how the Shell balance equations used in nonlinear structural dynamics, can be easily derived from this extension of the Poincaré's result.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|