Poincaré’s Equations for Cosserat Media: Application to Shells - Archive ouverte HAL
Article Dans Une Revue Journal of Nonlinear Science Année : 2016

Poincaré’s Equations for Cosserat Media: Application to Shells

Résumé

In 1901 Henri Poincaré discovered a new set of equations for mechanics. These equations are a generalization of Lagrange's equations for a system whose configuration space is a Lie group which is not necessarily commutative. Since then, this result has been extensively refined through the Lagrangian reduction theory. In the present contribution, we extend these equations from classical mechanical systems to continuous Cosserat media, i.e. media in which the usual point particles are replaced by small rigid bodies, called micro-structures. In particular, we will see how the Shell balance equations used in nonlinear structural dynamics, can be easily derived from this extension of the Poincaré's result.
Fichier principal
Vignette du fichier
Boyer_Renda_JNLS_archive_v2.pdf (641.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01230677 , version 1 (18-11-2015)
hal-01230677 , version 2 (27-09-2016)
hal-01230677 , version 3 (03-10-2016)

Identifiants

Citer

Frédéric Boyer, Federico Renda. Poincaré’s Equations for Cosserat Media: Application to Shells. Journal of Nonlinear Science, 2016, pp.1-44. ⟨10.1007/s00332-016-9324-7⟩. ⟨hal-01230677v2⟩
257 Consultations
905 Téléchargements

Altmetric

Partager

More