Hierarchical image segmentation relying on a likelihood ratio test - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Hierarchical image segmentation relying on a likelihood ratio test

Résumé

Hierarchical image segmentation provides a set of image seg-mentations at different detail levels in which coarser details levels can be produced by simple merges of regions from segmentations at finer detail levels. However, many image segmentation algorithms relying on similarity measures lead to no hierarchy. One of interesting similarity measures is a likelihood ratio, in which each region is modelled by a Gaussian distribution to approximate the cue distributions. In this work, we propose a hierarchical graph-based image segmentation inspired by this likelihood ratio test. Furthermore, we study how the inclusion of hierarchical property have influenced the computation of quality measures in the original method. Quantitative and qualitative assessments of the method on three well known image databases show efficiency.
Fichier principal
Vignette du fichier
2015-conf-iciap-sprt.pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01229844 , version 1 (17-11-2015)

Identifiants

Citer

Silvio Jamil F. Guimarães, Zenilton Kleber Gonçalves Do Patrocinio, Yukiko Kenmochi, Jean Cousty, Laurent Najman. Hierarchical image segmentation relying on a likelihood ratio test. ICIAP 2015, Sep 2015, Genova, Italy. ⟨10.1007/978-3-319-23234-8_3⟩. ⟨hal-01229844⟩
239 Consultations
364 Téléchargements

Altmetric

Partager

More