From Hard Sphere Dynamics to the Stokes–Fourier Equations: An Analysis of the Boltzmann–Grad Limit - Archive ouverte HAL
Article Dans Une Revue Annals of PDE Année : 2017

From Hard Sphere Dynamics to the Stokes–Fourier Equations: An Analysis of the Boltzmann–Grad Limit

Résumé

We derive the linear acoustic and Stokes-Fourier equations as the limiting dynamics of a system of N hard spheres of diameter $\epsilon$ in two space dimensions, when N $\rightarrow$ $\infty$, $\epsilon$ $\rightarrow$ 0, N $\epsilon$ = $\alpha$ $\rightarrow$ $\infty$, using the linearized Boltzmann equation as an intermediate step. Our proof is based on Lanford's strategy [18], and on the pruning procedure developed in [5] to improve the convergence time to all kinetic times with a quantitative control which allows us to reach also hydrodynamic time scales. The main novelty here is that uniform L 2 a pri-ori estimates combined with a subtle symmetry argument provide a weak version of chaos, in the form of a cumulant expansion describing the asymptotic decorrelation between the particles. A refined geometric analysis of recollisions is also required in order to discard the possibility of multiple recollisions.
Fichier principal
Vignette du fichier
boltzlinearise_14_09_16.pdf (978.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01226094 , version 1 (08-11-2015)
hal-01226094 , version 2 (14-12-2015)
hal-01226094 , version 3 (20-10-2016)

Identifiants

Citer

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond. From Hard Sphere Dynamics to the Stokes–Fourier Equations: An Analysis of the Boltzmann–Grad Limit. Annals of PDE, 2017, 3 (1), ⟨10.1007/s40818-016-0018-0⟩. ⟨hal-01226094v3⟩
1221 Consultations
302 Téléchargements

Altmetric

Partager

More