Gradient scan Gibbs sampler: An efficient high-dimensional sampler application in inverse problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Gradient scan Gibbs sampler: An efficient high-dimensional sampler application in inverse problems

Résumé

The paper deals with Gibbs samplers that include high-dimensional conditional Gaussian distributions. It proposes an efficient algorithm that only requires a scalar Gaussian sampling. The algorithm relies on a random excursion along a random direction. It is proved to converge, i.e. the drawn samples are asymptotically under the target distribution. Our original motivation is in unsupervised inverse problems related to general linear observation models and their solution in a hierarchical Bayesian framework implemented through sampling algorithms. The paper provides an illustration focused on 2-D simulations and on the super-resolution problem.
Fichier principal
Vignette du fichier
Orieux15 - Gradient scan gibbs sampler.pdf (754.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01225866 , version 1 (06-11-2015)

Identifiants

Citer

François Orieux, O Féron, Jean-François Giovannelli. Gradient scan Gibbs sampler: An efficient high-dimensional sampler application in inverse problems. 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2015), Apr 2015, Brisbane, Australia. ⟨10.1109/ICASSP.2015.7178739⟩. ⟨hal-01225866⟩
332 Consultations
248 Téléchargements

Altmetric

Partager

More