Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa Année : 2018

Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition

Résumé

The curvature-dimension condition is a generalization of the Bochner inequality to weighted Riemannian manifolds and general metric measure spaces. It is now known to be equivalent to evolution variational inequalities for the heat semigroup, and quadratic Wasserstein distance contraction properties at different times. On the other hand, in a compact Riemannian manifold, it implies a same-time Wasserstein contraction property for this semigroup. In this work we generalize the latter result to metric measure spaces and more importantly prove the converse: contraction inequalities are equivalent to curvature-dimension conditions. Links with functional inequalities are also investigated.
Fichier principal
Vignette du fichier
BGGK-contraction.pdf (390.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01220776 , version 1 (26-10-2015)

Identifiants

Citer

François Bolley, Ivan Gentil, Arnaud Guillin, Kazumasa Kuwada. Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition. Annali della Scuola Normale Superiore di Pisa, 2018, 18 (4), pp.1-36. ⟨hal-01220776⟩
495 Consultations
235 Téléchargements

Altmetric

Partager

More