Morphological segmentation of hyperspectral images - Archive ouverte HAL Access content directly
Journal Articles Image Analysis & Stereology Year : 2007

Morphological segmentation of hyperspectral images

Abstract

The present paper develops a general methodology for the morphological segmentation of hyperspectral images, i.e., with an important number of channels. This approach, based on watershed, is composed of a spectral classification to obtain the markers and a vectorial gradient which gives the spatial information. Several alternative gradients are adapted to the different hyperspectral functions. Data reduction is performed either by Factor Analysis or by model fitting. Image segmentation is done on different spaces: factor space, parameters space, etc. On all these spaces the spatial/spectral segmentation approach is applied, leading to relevant results on the image.
Fichier principal
Vignette du fichier
2007_Morphological_seg_hyperspectral.pdf (751.71 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01220414 , version 1 (18-12-2015)
hal-01220414 , version 2 (01-10-2020)

Licence

Copyright

Identifiers

Cite

Guillaume Noyel, Jesus Angulo, Dominique Jeulin. Morphological segmentation of hyperspectral images. Image Analysis & Stereology, 2007, 26 (3), pp.101-109. ⟨10.5566/ias.v26.p101-109⟩. ⟨hal-01220414v2⟩
4854 View
193 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More