On the Galois groups of generalized Laguerre Polynomials - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2014

On the Galois groups of generalized Laguerre Polynomials

Résumé

For a positive integer n and a real number α, the generalized Laguerre polynomials are defined by L (α) n (x) = n j=0 (n + α)(n − 1 + α) · · · (j + 1 + α)(−x) j j!(n − j)!. These orthogonal polynomials are solutions to Laguerre's Differential Equation which arises in the treatment of the harmonic oscillator in quantum mechanics. Schur studied these Laguerre polynomials for their interesting algebraic properties. In this short article, it is shown that the Galois groups of Laguerre polynomials L(α)(x) is Sn with α ∈ {±1,±1,±2,±1,±3} except when (α,n) ∈ {(1,2),(−2,11),(2,7)}. The proof is based on ideas of p−adic Newton polygons.
Fichier principal
Vignette du fichier
37Article2.pdf (229.47 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01220303 , version 1 (27-10-2015)

Identifiants

Citer

Shanta Laishram. On the Galois groups of generalized Laguerre Polynomials. Hardy-Ramanujan Journal, 2014, Volume 37 - 2014, pp.8-12. ⟨10.46298/hrj.2014.1317⟩. ⟨hal-01220303⟩
71 Consultations
617 Téléchargements

Altmetric

Partager

More