Permutation Pattern matching in (213, 231)-avoiding permutations
Résumé
Given permutations σ of size k and π of size n with k < n, the permutation pattern matching problem is to decide whether σ occurs in π as an order-isomorphic subsequence. We give a linear-time algorithm in case both π and σ avoid the two size-3 permutations 213 and 231. For the special case where only σ avoids 213 and 231, we present a O(max(kn², n² log log n)-time algorithm. We extend our research to bivincular patterns that avoid 213 and 231 and present a O(kn^4)-time algorithm. Finally we look at the related problem of the longest subsequence which avoids 213 and 231.
Fichier principal
article.pdf (221.11 Ko)
Télécharger le fichier
dmtcs.pdf (1.92 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|