Exact and approximation algorithms for DENSEST k-SUBGRAPH - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Exact and approximation algorithms for DENSEST k-SUBGRAPH

Nicolas Bourgeois
Aristotelis Giannakos
  • Fonction : Auteur
  • PersonId : 947024
  • IdRef : 193460564
Giorgio Lucarelli
Ioannis Milis
  • Fonction : Auteur
Vangelis Th. Paschos
  • Fonction : Auteur
  • PersonId : 946990
  • IdRef : 069701873

Résumé

The DENSEST k-SUBGRAPH problem is a generalization of the maximum clique problem, in which we are given a graph G and a positive integer k, and we search among the subsets of k vertices of G one inducing a maximum number of edges. In this paper, we present algorithms for finding exact solutions of k-SUBGRAPH improving the trivial exponential time complexity of $O^\ast(2^n)$ and using polynomial space. Two FPT algorithms are also proposed; the first considers as parameter the treewidth of the input graph and uses exponential space, while the second is parameterized by the size of the minimum vertex cover and uses polynomial space. Finally, we propose several approximation algorithms running in moderately exponential or parameterized time.

Dates et versions

hal-01215976 , version 1 (15-10-2015)

Identifiants

Citer

Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, Vangelis Th. Paschos. Exact and approximation algorithms for DENSEST k-SUBGRAPH. 7th International Workshop on Algorithms and Computation (WALCOM 2013), Feb 2013, Kharagpur, India. pp.114-125, ⟨10.1007/978-3-642-36065-7_12⟩. ⟨hal-01215976⟩
52 Consultations
0 Téléchargements

Altmetric

Partager

More