A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures
Résumé
In this paper we make a comparison between the two-scale asymptotic expansion method for periodic homogenization and the so-called Bloch wave method. It is well-known that the homogenized tensor coincides with the Hessian matrix of the first Bloch eigenvalue when the Bloch parameter vanishes. In the context of the two-scale asymptotic expansion method, there is the notion of high order homogenized equation [5] where the homogenized equation can be improved by adding small additional higher order differential terms. The next non-zero high order term is a fourth-order term, accounting for dispersion effects (see e.g. [23], [18], [15]). Surprisingly, this homogenized fourth-order tensor is not equal to the fourth-order tensor arising in the Taylor expansion of the first Bloch eigenvalue, which is often called Burnett tensor. Here, we establish an exact relation between the homogenized fourth-order tensor and the Burnett fourth-order tensor. It was proved in [11] that the Burnett fourth-order tensor has a sign. For the special case of a simple laminate we prove that the homogenized fourth-order tensor may change sign. In the elliptic case we explain the difference between the homogenized and Burnett fourth-order tensors by a difference in the source term which features an additional corrector term. Finally, for the wave equation, the two fourth-order tensors coincide again, so dispersion is unambiguously defined, and only the source terms differ as in the elliptic case.
Origine | Fichiers produits par l'(les) auteur(s) |
---|