Multimodal Kalman Filtering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Multimodal Kalman Filtering

Résumé

A difficult aspect of multimodal estimation is the possible discrepancybetween the sampling rates and/or the noise levels of theconsidered data. Many algorithms cope with these dissimilaritiesempirically. In this paper, we propose a conceptual analysis ofmultimodality where we try to find the “optimal” way of combiningmodalities. More specifically, we consider a simple Kalman filteringframework where several noisy sensors with different samplingfrequences and noise variances regularly observe a hidden state.We experimentally underline some relationships between the samplinggrids and the asymptotic variance of the maximum a posteriori(MAP) estimator. However, the explicit study of the asymptoticvariance seems intractable even in the simplest cases. We describe apromising idea to circumvent this difficulty: exploiting a stochasticmeasurement model for which one can more easily study the averageasymptotic behavior.
Fichier principal
Vignette du fichier
mmkf.pdf (222.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01208195 , version 1 (02-10-2015)
hal-01208195 , version 2 (22-01-2016)

Identifiants

  • HAL Id : hal-01208195 , version 2

Citer

Anthony Bourrier, Pierre-Olivier Amblard, Olivier J.J. Michel, Christian Jutten. Multimodal Kalman Filtering. ICASSP 2016 - 41st IEEE International Conference on Acoustics, Speech and Signal Processing, Mar 2016, Shanghai, China. ⟨hal-01208195v2⟩
286 Consultations
1475 Téléchargements

Partager

More