Quasisymmetric Schur functions and modules of the $0$-Hecke algebra
Abstract
We define a $0$-Hecke action on composition tableaux, and then use it to derive $0$-Hecke modules whose quasisymmetric characteristic is a quasisymmetric Schur function. We then relate the modules to the weak Bruhat order and use them to derive a new basis for quasisymmetric functions. We also classify those modules that are tableau-cyclic and likewise indecomposable. Finally, we develop a restriction rule that reflects the coproduct of quasisymmetric Schur functions.
Nous définissons une action $0$-Hecke sur les tableaux de composition, et ensuite nous l’utilisons pour dériver les modules $0$-Hecke dont la caractéristique quasi-symétrique est une fonction de Schur quasi-symétrique. Nous mettons les modules en relation avec l’ordre de Bruhat faible et les utilisons pour dériver une nouvelle base pour les fonctions quasi-symétriques. Nous classons aussi ces modules qui sont tableau-cycliques et aussi indécomposable. Enfin, nous développons une règle de restriction qui reflète le coproduit des fonctions de Schur quasi-symétriques.
Origin | Publisher files allowed on an open archive |
---|
Loading...