Weighted interpolation inequalities: a perturbation approach - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Weighted interpolation inequalities: a perturbation approach

Résumé

We study optimal functions in a family of Caffarelli-Kohn-Nirenberg inequalities with a power-law weight, in a regime for which standard symmetrization techniques fail. We establish the existence of optimal functions, study their properties and prove that they are radial when the power in the weight is small enough. Radial symmetry up to translations is true for the limiting case where the weight vanishes, a case which corresponds to a well-known subfamily of Gagliardo-Nirenberg inequalities. Our approach is based on a concentration-compactness analysis and on a perturbation method which uses a spectral gap inequality. As a consequence, we prove that optimal functions are explicit and given by Barenblatt-type profiles in the perturbative regime.
Fichier principal
Vignette du fichier
Dolbeault-Muratori-Nazaret.pdf (376.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01207009 , version 1 (29-09-2015)
hal-01207009 , version 2 (17-03-2016)
hal-01207009 , version 3 (17-09-2016)

Identifiants

Citer

Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted interpolation inequalities: a perturbation approach. 2015. ⟨hal-01207009v1⟩
404 Consultations
199 Téléchargements

Altmetric

Partager

More