Interpolation inequalities on the sphere: linear vs. nonlinear flows - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Interpolation inequalities on the sphere: linear vs. nonlinear flows

Résumé

This paper is devoted to sharp interpolation inequalities on the sphere and their proof using flows. The method explains some rigidity results and proves uniqueness in related semilinear elliptic equations. Nonlinear flows allow to cover the interval of exponents ranging from Poincaré to Sobolev inequality, while an intriguing limitation (an upper bound on the exponent) appears in the carré du champ method based on the heat flow. We investigate this limitation, describe a counter-example for exponents which are above the bound, and obtain improvements below.
Fichier principal
Vignette du fichier
DoEsLo2015.pdf (950.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01206975 , version 1 (29-09-2015)
hal-01206975 , version 2 (23-10-2015)

Identifiants

Citer

Jean Dolbeault, Maria J. Esteban, Michael Loss. Interpolation inequalities on the sphere: linear vs. nonlinear flows. 2015. ⟨hal-01206975v1⟩
421 Consultations
231 Téléchargements

Altmetric

Partager

More