Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle

Roland Bacher

Résumé

Using Chebyshev polynomials of both kinds, we construct rational fractions which are convergents of the smallest root of $x^2-\alpha x+1$ for $\alpha=3,4,5,\dots$. Some of the underlying identities suggest an identity involving binomial coefficients which leads to a triangular array sharing many properties with Pascal's triangle.
Fichier principal
Vignette du fichier
pierce1.pdf (124.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01206138 , version 1 (28-09-2015)

Identifiants

Citer

Roland Bacher. Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle. 2015. ⟨hal-01206138⟩
99 Consultations
263 Téléchargements

Altmetric

Partager

More