Genome-wide identification of [i]Bacillus subtilis[/i] Zur-binding sites associated with a Zur box expands its known regulatory network - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue BMC Microbiology Année : 2015

Genome-wide identification of [i]Bacillus subtilis[/i] Zur-binding sites associated with a Zur box expands its known regulatory network

Résumé

Background: The Bacillus subtilis Zur transcription factor recognizes a specific DNA motif, the Zur box, to repress expression of genes in response to zinc availability. Although several Zur-regulated genes are well characterized, a genome-wide mapping of Zur-binding sites is needed to define further the set of genes directly regulated by this protein. [br/] Results: Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we reported the identification of 80 inter-and intragenic chromosomal sites bound by Zur. Seven Zur-binding regions constitute the Zur primary regulon while 35 newly identified targets were associated with a predicted Zur box. Using transcriptional fusions an intragenic Zur box was showed to promote a full Zur-mediated repression when placed within a promoter region. In addition, intragenic Zur boxes appeared to mediate a transcriptional cis-repressive effect (4-to 9-fold) but the function of Zur at these sites remains unclear. Zur binding to intragenic Zur boxes could prime an intricate mechanisms of regulation of the transcription elongation, possibly with other transcriptional factors. However, the disruption of zinc homeostasis in Delta zur cells likely affects many cellular processes masking direct Zur-dependent effects. Finally, most Zur-binding sites were located near or within genes responsive to disulfide stress. These findings expand the potential Zur regulon and reveal unknown interconnections between zinc and redox homeostasis regulatory networks. [br/] Conclusions: Our findings considerably expand the potential Zur regulon, and reveal a new level of complexity in Zur binding to its targets via a Zur box motif and via a yet unknown mechanism that remains to be characterized.
Fichier principal
Vignette du fichier
2015_Prestel_BMC Microbiology_1.pdf (1.28 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01204456 , version 1 (27-05-2020)

Identifiants

Citer

Eric Prestel, Philippe Noirot, Sandrine Auger. Genome-wide identification of [i]Bacillus subtilis[/i] Zur-binding sites associated with a Zur box expands its known regulatory network. BMC Microbiology, 2015, 15, ⟨10.1186/s12866-015-0345-4⟩. ⟨hal-01204456⟩
30 Consultations
20 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More