Disambiguation of Named Entities in Cultural Heritage Texts Using Linked Data Sets
Résumé
This paper proposes a graph-based algorithm baptized REDEN for the disambiguation of authors’ names in French literary criticism texts and scientific essays from the 19th century. It leverages knowledge from different Linked Data sources in order to select candidates for each author mention, then performs fusion of DBpedia and BnF individuals into a single graph, and finally decides the best referent using the notion of graph centrality. Some experiments are conducted in order to identify the best size of disambiguation context and to assess the influence on centrality of specific relations represented as edges. This work will help scholars to trace the impact of authors’ ideas across different works and time periods.