A Review of Features for the Discrimination of Twitter Users: Application to the Prediction of Offline Influence - Archive ouverte HAL
Article Dans Une Revue Social Network Analysis and Mining Année : 2016

A Review of Features for the Discrimination of Twitter Users: Application to the Prediction of Offline Influence

Vincent Labatut
Nicolas Dugué

Résumé

Many works related to Twitter aim at characterizing its users in some way: role on the service (spammers, bots, organizations, etc.), nature of the user (socio-professional category, age, etc.), topics of interest , and others. However, for a given user classification problem, it is very difficult to select a set of appropriate features, because the many features described in the literature are very heterogeneous, with name overlaps and collisions, and numerous very close variants. In this article, we review a wide range of such features. In order to present a clear state-of-the-art description, we unify their names, definitions and relationships, and we propose a new, neutral, typology. We then illustrate the interest of our review by applying a selection of these features to the offline influence detection problem. This task consists in identifying users which are influential in real-life, based on their Twitter account and related data. We show that most features deemed efficient to predict online influence, such as the numbers of retweets and followers, are not relevant to this problem. However, We propose several content-based approaches to label Twitter users as Influencers or not. We also rank them according to a predicted influence level. Our proposals are evaluated over the CLEF RepLab 2014 dataset, and outmatch state-of-the-art methods.
Fichier principal
Vignette du fichier
snam.pdf (1.74 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01203171 , version 1 (22-09-2015)
hal-01203171 , version 2 (24-07-2016)
hal-01203171 , version 3 (28-07-2016)

Licence

Identifiants

Citer

Jean-Valère Cossu, Vincent Labatut, Nicolas Dugué. A Review of Features for the Discrimination of Twitter Users: Application to the Prediction of Offline Influence. Social Network Analysis and Mining, 2016, 6 (1), pp.25. ⟨10.1007/s13278-016-0329-x⟩. ⟨hal-01203171v3⟩
244 Consultations
2942 Téléchargements

Altmetric

Partager

More