Hybrid sparse and low-rank time-frequency signal decomposition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Hybrid sparse and low-rank time-frequency signal decomposition

Résumé

We propose a new hybrid (or morphological) generative model that decomposes a signal into two (and possibly more) layers. Each layer is a linear combination of localised atoms from a time-frequency dictionary. One layer has a low-rank time-frequency structure while the other as a sparse structure. The time-frequency resolutions of the dictionaries describing each layer may be different. Our contribution builds on the recently introduced Low-Rank Time-Frequency Synthesis (LRTFS) model and proposes an iterative algorithm similar to the popular iterative shrinkage/thresholding algorithm. We illustrate the capacities of the proposed model and estimation procedure on a tonal + transient audio decomposition example. Index Terms— Low-rank time-frequency synthesis, sparse component analysis, hybrid/morphological decom-positions, non-negative matrix factorisation.
Fichier principal
Vignette du fichier
eusipco2015.pdf (1.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01199622 , version 1 (15-09-2015)

Identifiants

  • HAL Id : hal-01199622 , version 1

Citer

Cédric Févotte, Matthieu Kowalski. Hybrid sparse and low-rank time-frequency signal decomposition. 23rd European Signal Processing Conference (EUSIPCO 2015), Aug 2015, Nice, France. ⟨hal-01199622⟩
423 Consultations
273 Téléchargements

Partager

More