Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems
Résumé
Let $k≥2$ be a fixed integer. Given a bounded sequence of real numbers $(a_n:n≥k)$, then for any sequence $(f_n:n≥1)$ of real numbers satisfying the divide-and-conquer recurrence $f_n = (k-mod(n,k))f_⌊n/k⌋+mod(n,k)f_⌈n/k⌉ + a_n, n ≥k$, there is a unique continuous periodic function $f^*:\mathbb{R}→\mathbb{R}$ with period 1 such that $f_n = nf^*(\log _kn)+o(n)$. If $(a_n)$ is periodic with period $k, a_k=0$, and the initial conditions $(f_i:1 ≤i ≤k-1)$ are all zero, we obtain a specific iterated function system $S$, consisting of $k$ continuous functions from $[0,1]×\mathbb{R}$ into itself, such that the attractor of $S$ is $\{(x,f^*(x)): 0 ≤x ≤1\}$. Using the system $S$, an accurate plot of $f^*$ can be rapidly obtained.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...