Energy-Efficient Power Manager and MAC Protocol for Multi-Hop Wireless Sensor Networks Powered by Periodic Energy Harvesting Sources
Résumé
To overcome the limited energy in battery-powered wireless sensor networks (WSNs), harvested energy is considered as a potential solution to achieve autonomous systems. A power manager (PM) is usually embedded in wireless nodes to adapt the computation load by changing their wake-up interval according to the harvested energy. In order to prolong the network lifetime, the PM must ensure that every node satisfies the energy neutral operation (ENO) condition. However, when a multi-hop network is considered, changing the wake-up interval regularly may cripple the synchronization among nodes and, therefore, degrade the global system quality of service. In this paper, a wake-up variation reduction PM is proposed to solve this issue. This PM is applied for wireless nodes powered by a periodic energy source (e.g., light energy in an office) over a constant cycle of 24 h. Our PM not only follows the ENO condition, but also reduces the wake-up interval variations of WSN nodes. Based on this PM, an energy-efficient protocol, named synchronized wake-up interval MAC, is also proposed. OMNET++ simulation results using three different harvested profiles show that the data rate of a WSN node can be increased up to 65% and the latency reduced down to 57% compared with state-of-the-art PMs. Validations on a real WSN platform have also been performed and confirmed the efficiency of our approach.
Mots clés
telecommunication power management
synchronisation
quality of service
energy harvesting
energy conservation
access protocols
wireless sensor networks
multihop wireless sensor network
periodic energy harvesting source
synchronized wake-up interval MAC protocol
energy-efficient power manager
battery-po