ADAPTIVE DECONVOLUTION OF LINEAR FUNCTIONALS ON THE NONNEGATIVE REAL LINE - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Planning and Inference Année : 2016

ADAPTIVE DECONVOLUTION OF LINEAR FUNCTIONALS ON THE NONNEGATIVE REAL LINE

Résumé

In this paper we consider the convolution model Z = X + Y with X of unknown density f , independent of Y , when both random variables are nonnegative. Our goal is to estimate linear functionals of f such as f for a known function ψ assuming that the distribution of Y is known and only Z is observed. We propose an estimator of f based on a projection estimator of f on Laguerre spaces, present upper bounds on the quadratic risk and derive the rate of convergence in function of the smoothness of f, g and ψ. Then we propose a nonparametric data driven strategy, inspired Goldenshluger and Lepski (2011) method to select a relevant projection space. This methodology is then adapted to pointwise estimation of f. We illustrate the good performance of the new method through simulations. We also test a new approach for choosing the tuning parameter in Goldenshluger-Lepski data driven estimators following ideas developed in Lacour and Massart (2015).
Fichier principal
Vignette du fichier
Mabon_linear_functional_v2.pdf (621.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01195711 , version 1 (08-09-2015)
hal-01195711 , version 2 (30-03-2016)

Identifiants

Citer

Gwennaëlle Mabon. ADAPTIVE DECONVOLUTION OF LINEAR FUNCTIONALS ON THE NONNEGATIVE REAL LINE. Journal of Statistical Planning and Inference, 2016, 178, pp.1-23. ⟨10.1016/j.jspi.2016.04.006⟩. ⟨hal-01195711v2⟩
180 Consultations
279 Téléchargements

Altmetric

Partager

More