Similarity matrix analysis and divergence measures for statistical detection of unknown deterministic signals hidden in additive noise - Archive ouverte HAL
Article Dans Une Revue Physics Letters A Année : 2015

Similarity matrix analysis and divergence measures for statistical detection of unknown deterministic signals hidden in additive noise

Olivier Le Bot
  • Fonction : Auteur
  • PersonId : 1171938
  • IdRef : 11133568X
Jerome I. Mars

Résumé

This Letter proposes an algorithm to detect an unknown deterministic signal hidden in additive white Gaussian noise. The detector is based on recurrence analysis. It compares the distribution of the similarity matrix coefficients of the measured signal with an analytic expression of the distribution expected in the noise-only case. This comparison is achieved using divergence measures. Performance analysis based on the receiver operating characteristics shows that the proposed detector outperforms the energy detector, giving a probability of detection 10% to 50% higher, and has a similar performance to that of a sub-optimal filter detector.
Fichier principal
Vignette du fichier
Physics_Letters_black.pdf (798.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01190805 , version 1 (14-09-2015)

Identifiants

Citer

Olivier Le Bot, Jerome I. Mars, Cedric Gervaise. Similarity matrix analysis and divergence measures for statistical detection of unknown deterministic signals hidden in additive noise. Physics Letters A, 2015, 379 (40-41), pp.2597-2609. ⟨10.1016/j.physleta.2015.06.004⟩. ⟨hal-01190805⟩
133 Consultations
494 Téléchargements

Altmetric

Partager

More