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Abstract

This Letter proposes an algorithm to detect an unknown deterministic signal

hidden in additive white Gaussian noise. The detector is based on recurrence

analysis. It compares the distribution of the similarity matrix coefficients of

the measured signal with an analytic expression of the distribution expected

in the noise-only case. This comparison is achieved using divergence mea-

sures. Performance analysis based on the receiver operating characteristics

shows that the proposed detector outperforms the energy detector, giving a

probability of detection 10% to 50% higher, and has a similar performance

to that of a sub-optimal filter detector.
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1. Introduction1

Deciding whether a measured data sequence is noise only or contains a2

short deterministic fraction within the observation time is of greatest im-3

portance in several application fields, such as radar interception, underwater4

acoustic signal detection, and analysis of medical signals. The general frame-5

work of a signal detector is classical, as the detector has to choose between6

one of the following hypotheses:7

• H0: the measured signal is noise only: x(t)=n(t)8

• H1: the measured signal has a deterministic part hidden in additive9

noise: x(t)=s(t)+n(t)10

where n(t) is white Gaussian noise (WGN), and s(t) is the deterministic signal11

to be detected. To solve this signal detection, a statistical test is computed12

on the data that are measured, and then compared to a detection threshold13

[1].14

The choice of the statistical test and the estimation of its probability den-15

sity functions (PDFs) under hypotheses H0 and H1 depend on the amount16

of a-priori knowledge we have about the signal we want to detect and about17

the noise that it contains. When the waveform of the signal to detect is18

fully known, the optimum statistical test is known as a matched filter [1].19

For the opposite situation, when the waveform of the deterministic signal is20
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not known, classical detectors are usually based on signal energy [1] or on21

high-order statistics [2, 3], and perform non-Gaussianity tests. Also, there22

are several approaches that can be used to set the detection threshold, in-23

cluding the Neyman-Pearson method, the Bayes’ criterion, the maximum a24

posteriori, and the false discovery rate [1].25

This Letter aims to present a new detection scheme using an approach26

that was inspired by recurrence plots [4] and is combined with divergence27

measures, to detect short (few tens to hundreds of samples) unknown deter-28

ministic signals in additive WGN. Recurrence plots were introduced to study29

the stationarity of non-linear dynamical systems [4], and have been shown to30

be useful for a large set of applications, like geology [5], climatology [6], mu-31

sic [7] and analysis of medical signals [8], to name but a few. As recurrence32

plots show different patterns that depend on the dynamic of the system (i.e.,33

random, periodic, chaotic), several approaches have been presented in the34

literature to quantify and distinguish between these three different dynam-35

ical behaviors, and particularly for deterministic signals in random process36

[9–15]. A common point to all of these recurrence plot studies is their use of37

what is known as recurrence quantification analysis (RQA) [8, 16, 17] to de-38

cide whether the measured signal is noise or not. Thus, a classical detection39

scheme in the recurrence plot community can be summed-up as follows:40

x(t) −→ SM −→ RP −→ RQA −→ Detector (1)

where SM represents the similarity matrix, and RP the recurrence plot. How-41

ever, distributions of RQA metrics under hypotheses H0 and H1 do not gen-42

erally follow existing distributions, and finding analytic expressions for these43

latter is not straightforward [15].44
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Instead of using RQA, we restrict our detector to only the use of the45

similarity matrix, which is sometimes called the distance matrix or distance46

plot in the literature [15]. The similarity matrix is the intermediate matrix47

that is obtained before applying the recurrence threshold that leads to the48

recurrence plot. Thus, we avoid the choice of this recurrence threshold and49

our detection scheme comes down to:50

x(t) −→ SM −→ Detector (2)

Our detector compares the empirical distribution of the similarity matrix51

coefficients of a measured signal with the distribution that is expected if the52

measured signal is WGN. The expression of this expected distribution can be53

derived analytically more easily than the RQA distribution. The comparison54

between the empirical and the analytic distributions is carried out with a55

goodness-of-fit test that is based on statistical divergences [18].56

Overall, the detector presented in this Letter follows the same scheme57

as that proposed by Michalowicz [19]. Our algorithm differs from that of58

Michalowicz [19] in the use of divergence measures instead of a modified59

version of the χ2 test to compare the analytic and the empirical distributions60

of the similarity matrix coefficients. Classical χ2 test cannot be used because61

the coefficients of the similarity matrix are not fully independent of each62

other, as demonstrated by Michalowicz [19], which can bias the result of the63

test by giving much more false-positive detection than expected [19]. Finally,64

we do not compute the similarity matrix with a Euclidean norm only, as we65

propose the use of Pearson’s correlation coefficient and the dot-product for66

this purpose [20].67
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After a brief recall of the recurrence plot method, we describe the different68

steps of our detection algorithm. Strong emphasis is put on derivation of the69

analytic distributions of the similarity matrix coefficients under hypothesis70

H0, when the Euclidean norm, Pearson’s correlation coefficient, and the dot-71

product are used to compute the similarity matrix. Then, we discuss the72

choice of an appropriate divergence function to compare the analytic and73

empirical distributions. The third part presents the performances of our74

detector through the use of receiver operating characteristic (ROC) curves.75

Three different deterministic signals are used in this part: a periodic signal, a76

chaotic Rössler system and a real acoustic signal. The influence of the degrees77

of freedom involved in our detection scheme are also investigated, such as the78

choice of the similarity function or the divergence measure. The performance79

of the proposed detector is compared with that of an energy detector, a sub-80

optimal filter detector and the optimal matched-filter detector, which are81

commonly used in signal processing.82

2. Recurrence plots83

Recurrence plots were introduced to study complex systems and are aimed84

at visualizing the recurrence of their phase space trajectory [4]. Transforming85

a data sequence to a recurrence plot representation involves three main steps.86

First, the phase space trajectory of the measured signal x(i) (i =1, ...,87

N) is reconstructed using the time delay embedding method [21, 22]. Each88

phase space vector is given by:89

−−−→
xm(i) = [x(i), x(i+ τ), ... , x(i+ (m− 1)τ)] (3)

where m is the embedding dimension, and τ is the delay.90
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The second step consists of measuring the level of similarity between two91

vectors of the phase space trajectory:
−−−→
xm(i) and

−−−→
xm(j). Calculating the92

similarity between all of the possible pairs of phase space vectors leads to the93

similarity matrix that is defined by:94

d(i, j) = Sim(
−−−→
xm(i) ,

−−−→
xm(j) ) (4)

where Sim(. , .) is the function that is chosen to study the likeness of the95

phase space vectors. A lot of different mathematical functions can be used for96

this step. Spatial distances, and particularly the Euclidean norm, are mostly97

used for this purpose by the recurrence plot community [23]. In this Letter,98

we will introduce new functions, i.e., Pearson’s correlation coefficient and99

the dot-product, which are common similarity measures in signal processing,100

but not in the recurrence plot community.101

Finally, as the recurrence plot is obtained through the comparison of102

each coefficient of the similarity matrix to a threshold, the recurrence plot is103

a binary matrix where the coefficient of index (i, j) is 1 if
−−−→
xm(i) and

−−−→
xm(j)104

are considered as similar, and is 0 otherwise.105

3. Method106

3.1. Overview of the signal detection scheme107

The signal detection scheme must give an answer that allows us to decide108

whether a finite sequence of discrete samples contains a deterministic signal109

or noise only. After calculating Eq. (3) and Eq. (4), the PDF of the similarity110

matrix coefficients is built. This PDF is expected to fit a given theoretical111

PDF if the measured signal is only WGN. We use a divergence measure to112
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compare the theoretical expected PDF under hypothesis H0 with the em-113

pirical PDF associated with the similarity matrix of the measured signal.114

We recall that in probability theory, a divergence measure is a mathematical115

function that quantifies the distance between two probability distributions.116

The result of the divergence measure is a positive number D that we com-117

pare with a detection threshold λ. If D is below this threshold, this means118

that the distributions look alike, and consequently that the measured signal119

is WGN. For the opposite, i.e., if D is greater than the threshold, this means120

that the empirical PDF differs from the theoretical noise PDF, and thus that121

a deterministic signal is present. The threshold λ is chosen according to122

the Neyman-Pearson criterion. We recall that when performing a hypoth-123

esis test between two hypothesis H0 versus H1, Neyman-Pearson criterion124

is the one that maximizes the probability of detection while guaranteeing a125

given probability of false alarm (Pfa). With other words, a threshold fixed126

by the Neyman-Pearson criterion maximizes the probability (Pd) of choosing127

hypothesis H1 when H1 is effectively true and rejects hypothesis H0 with a128

probability Pfa when H0 is effectively true. To apply this criterion, we use129

Monte-Carlo simulations to built the distribution of the divergence measures130

D between the analytic PDF expected under hypothesis H0 and the empiri-131

cal PDF of the similarity matrix coefficients of finite length WGN. All of the132

steps of this detection scheme are summarized in Figure 1.133
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3.2. Analytical distribution of the similarity matrix coefficients in the ’noise134

only’ case135

3.2.1. Hypothesis136

Under hypothesis H0, we assume that the measured samples x(1), x(2),137

..., x(n) from a given sequence are independent Gaussian random variables138

with zero mean and variance σ2.139

To obtain the similarity matrix, we look at the similarity between the140

vectors
−−−→
xm(i) = [x(i), x(i+τ), ... , x(i+(m−1)τ)] and

−−−→
xm(j) = [x(j), x(j+141

τ), ... , x(j+(m−1)τ)] (with i 6= j), the components of which come from the142

measured signal. Therefore, under hypothesis H0, the components of both143

of these vectors are also independent Gaussian random variables with zero144

mean and variance σ2, and the vectors are independent of each other.145

Based on these assumptions, we analytically model the PDF of the sim-146

ilarity matrix coefficients under hypothesis H0, when the Euclidean norm,147

Pearson’s correlation coefficient, and the dot-product (each of which is de-148

scribed below) are used to compare the state space vectors.149

3.2.2. Euclidean norm150

The Euclidean norm between the two state space vectors is given by:151

di,j =

√√√√ m∑
k=1

(xk(i)− xk(j))2 (5)

where xk(i) and xk(j) are the kth components of vectors
−−−→
xm(i) and

−−−→
xm(j),152

respectively. According to the assumptions made above, xk(i) and xk(j) are153

independent Gaussian random variables with zero mean and variance σ2.154

Therefore, yk = xk(i) − xk(j) is also a Gaussian random variable with zero155
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mean and variance 2σ2, and every yk is independent of every other yk, for all156

k.157

By definition, if we take m independent Gaussian random variables Wk158

with zero mean and variance σ2
W , then the random variable Z given by159

Z =
m∑
k=1

(Wk

σW

)2
(6)

has a χ2 distribution with m degrees of freedom. By analogy, we show that160

the random variable161

m∑
k=1

y2k
2σ2

=

∑m
k=1 (xk(i)− xk(j))2

2σ2
=
d2i,j
2σ2

(7)

has a χ2 distribution with m degrees of freedom.162

So, if the Euclidean norm is used, normalizing the coefficients of the sim-163

ilarity matrix as in Eq. (7) will give a new similarity matrix, the coefficients164

of which will have a χ2 distribution with m degrees of freedom.165

3.2.3. Pearson’s correlation coefficient166

Pearson’s correlation coefficient between two state space vectors is given167

by168

di,j =

∑m
k=1

(
xk(i)− xk(i)

)(
xk(j)− xk(j)

)
√∑m

k=1

(
xk(i)− xk(i)

)2√∑m
k=1

(
xk(j)− xk(j)

)2 (8)

where xk(i) and xk(j) are the kth components of vectors
−−−→
xm(i) and

−−−→
xm(j),169

respectively, and xk(i) and xk(j) are the empirical means of
−−−→
xm(i) and

−−−→
xm(j),170

respectively. According to the assumptions made above, as xk(i) and xk(j)171

are independent variables for all k, then their co-variance is zero and the172

joint PDF of pair (xk(i), xk(j)) is the product of their respective PDFs.173
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As xk(i) and xk(j) have Gaussian distributions with zero mean and vari-174

ance σ2, their joint PDF is given by:175

f(xk(i), xk(j)) =
1

2πσ2
exp

(
− xk(i)

2

2σ2

)
exp

(
− xk(j)

2

2σ2

)
(9)

which is exactly the same as that of a bi-variate normal distribution with176

independent random variables and zero mean. Fisher [24–26] demonstrated177

that for pairs of independent random variables with bi-variate Gaussian dis-178

tributions, the distribution of the Pearson’s correlation coefficient r can be179

expressed as:180

f(r) =
1

β
(
m−1
2
, 1
2

)(1− r2)
m−4

2 (10)

where β(. , .) is the Beta function, and m is the embedding dimension.181

3.2.4. Dot-product182

The dot-product between two state space vectors is given by:183

di,j =
m∑
k=1

xk(i)× xk(j) (11)

where xk(i) and xk(j) are the kth components of vectors
−−−→
xm(i) and

−−−→
xm(j),184

respectively. Eq. (11) can be rewritten as follows:185

di,j =
1

4

( m∑
k=1

(
xk(i) + xk(j)

)2
−

m∑
k=1

(
xk(i)− xk(j)

)2)
(12)

such that we rely on the PDF of
∑m

k=1 (xk(i) + xk(j))
2 and

∑m
k=1 (xk(i) −186

xk(j))
2, which are easier to use, to derive the PDF associated with Eq. (11).187

In the case where
∑m

k=1 (xk(i) + xk(j))
2, as yk = xk(i) + xk(j) is the sum188

of two independent Gaussian random variables with zero mean and variance189
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σ2, then yk also has a Gaussian distribution with zero mean and variance190

2σ2. As in section 3.2.2, we show that the random variable ui,j given by:191

ui,j =
m∑
k=1

y2k
2σ2

=
m∑
k=1

(xk(i) + xk(j))
2

2σ2
(13)

has a χ2 distribution with m degrees of freedom. The same demonstration192

holds for
∑m

k=1 (xk(i)− xk(j))2, and as in section 3.2.2, the random variable193

vi,j that is given by:194

vi,j =
m∑
k=1

(xk(i)− xk(j))2

2σ2
(14)

follows a χ2 distribution, with m degrees of freedom.195

Combining Eq. (12), (13) and (14), this leads to:196

2di,j
σ2

= ui,j − vi,j (15)

Therefore, the distribution of the dot-product of two state space vectors that197

satisfy our assumptions is equivalent, to a scaling factor, to the difference198

of two independent random variables with χ2 distributions. The analytic199

expression of the distribution associated with this difference can be derived200

using the moment-generating function of the χ2 distribution.201

If X1, X2, ..., Xn are n independent random variables (which are not202

necessarily identically distributed), and Sn is a random variable defined by:203

Sn =
n∑
i=1

aiXi (16)

where ai ∈ R is a constant, then the moment-generating function of Sn is204

given by:205

MSn(y) = MX1(a1y)×MX2(a2y)× ...×MXn(any) (17)
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where MXi
is the moment-generating function of Xi.206

In our case, Sn is the sum of two independent random variables (ui,j,207

vi,j), both of which follow a χ2 distribution with m degrees of freedom. The208

moment-generating function of a χ2 distribution is:209

MX(y) = (1− 2y)−
m
2 (18)

According to the properties given above, the moment-generating function of210

ui,j − vi,j is therefore given by:211

Mui,j−vi,j(y) = (1− 4y2)−
m
2 (19)

The moment-generating function obtained in Eq. (19) is the same as that of212

a variance-Gamma distribution, the general expression for which is given by:213

MV.G.(λ, α, β, µ, y) = eµy
[

α2 − β2

α2 − (β + y)2

]λ
(20)

By identification, we find that the parameters of Eq. (20) leading to214

Eq. (19) are: µ = 0, α = 1/2, β = 0, λ = m/2215

The PDF of a variance-Gamma distribution is defined as:216

fZ(z) =
(α2 − β2)λ|z − µ|λ− 1

2

√
πΓ(λ)(2α)λ−

1
2

Kλ− 1
2
(α|z − µ|)eβ(x−µ) (21)

where Γ is the gamma function, and Kν(x) is the modified Bessel function217

of second kind. The PDF of (ui,j − vi,j) is finally obtained by replacing µ, α,218

β and λ by the values defined above, which gives:219

f(ui,j−vi,j)(z) =
|z|m−1

2

2m
√
πΓ
(
m
2

)Km−1
2

( |z|
2

)
(22)
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This PDF is continuous when z = 0 and m > 1, and is given by220

lim
z→0

f(ui,j−vi,j)(z) =
1

4
√
π

Γ
(
m−1
2

)
Γ
(
m
2

) (23)

So, if the dot-product is used, the multiplication of the similarity matrix221

by a factor 2/σ2 will give a new similarity matrix, the coefficients of which222

will have a distribution that is defined by Eq. (22) and (23).223

3.3. The divergence measure between the analytic distribution for the ’noise224

only’ case, and the empirical distribution of an unknown signal225

The next step in our detection scheme (fourth block in Fig. 1) is the226

comparison between the analytic distributions defined in the previous section227

and the empirical distributions of the similarity matrix coefficients of an228

unknown signal, to decide whether this latter fits the expected distribution229

under hypothesis H0. Such a comparison is called a goodness-of-fit test in230

statistics. A popular goodness-of-fit method is Pearson’s χ2 test [27]. As231

stated before, in our case, the χ2 test gives more false positives than expected,232

which means that it is not usable.233

To avoid this problem, we propose to use a goodness-of-fit test that is234

based on an information theory approach, which consists of computation of235

the difference of entropy between the two PDFs we want to compare. This236

approach is called the divergence measure, and this was first proposed by237

Shannon [28] and Kullback [29].238

3.3.1. Divergence measures239

Mathematically speaking, a function Div(. , .) : X × X 7→ R (where X240

is a set) is a divergence function [30] if, for all x, y ∈ X, it has the following241
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properties:242

• Div(x, y) ≥ 0 (non-negativity);243

• Div(x, y) = 0 ⇐⇒ x=y (identity of indiscernible).244

In general, divergence measures do not satisfy the triangular inequality; some245

of them are symmetric. Divergence measures can be split into several classes;246

i.e., f -divergences, Bregman divergences, α-divergences, β-divergences, and247

γ-divergences. Thorough state-of-the-art reviews of divergence classes and248

their respective properties can be found in [18, 30, 31].249

It is essential to decide which divergence measure to use, to have the250

best processing gain for our detector, although to the best of our knowledge,251

there are no strict rules for this in the literature. Therefore, we decided to252

study the performances of our detector for three of the most-cited divergence253

measures in the literature: the Kullback-Leibler divergence, the Hellinger254

divergence, and the Jensen-Shannon divergence.255

The Kullback-Leibler divergence is probably one of the most used diver-256

gences in the literature, particularly for goodnes-of-fit tests and parametric257

estimations [32, 33]. The Kullback-Leibler divergence is defined as follows:258

DKL(p || q) =

∫
p(x)ln

(
p(x)

q(x)

)
dx (24)

where p(x) and q(x) are the PDFs to be compared.259

The Hellinger divergence is expressed as:260

DH(p || q) =

√
1

2

∫ (√
p(x)−

√
q(x)

)2
dx (25)

The Kullback-Leibler divergence and Hellinger divergence belong to the f -261

divergence class.262
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The last divergence that we investigate here is the Jensen-Shannon di-263

vergence, which can be seen as a symmetric and smoothed version of the264

Kullback-Leibler divergence, and is expressed as:265

DJS(p||q) = ηDKL

(
p || (ηp+ (1− η)q)

)
+ηDKL

(
q || (ηp+ (1− η)q)

)
(26)

where DKL(.||.) is the Kullback-Leibler divergence given by Eq. (24), and266

η ∈ [0, 1]. In this Letter, the simulations are carried out with η = 0.5 (as an267

arbitrary choice).268

3.3.2. Distributions of the divergences in the ’noise only’ case269

To decide whether a measured signal is noise only or is a deterministic270

signal, the result of each of these divergence measures is compared to a271

threshold λ, the value of which is chosen to guarantee a given Pfa. To272

achieve this, it is necessary to know the PDF of the divergence measures273

under hypothesis H0. We obtain this latter with Monte-Carlo simulations274

(with 50,000 repetitions), by generating WGN (zero mean, σ2 = 1), and275

computing the first four steps of our detection scheme with an embedding276

m = 16 and a delay τ = 1 (Fig. 1). We repeat this simulation to obtain277

50,000 values of the divergence measures, and build their PDF. This PDF278

is estimated by a classical histogram method. These simulations are carried279

out for each similarity function (i.e., Euclidean norm, Pearson’s correlation280

coefficient, dot-product), followed by the three different divergence measures281

presented above, which leads to nine different detectors.282
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4. Results283

The performances of these nine detectors are studied through the ROC284

curves, which display the probability of detection versus the Pfa associated285

with the detector, as a function of the detection threshold. Within this286

performance analysis section, we show that the Kullback-Leibler divergence287

always gives the best processing gain whatever the similarity function (i.e.,288

Euclidean norm, Pearson’s correlation coefficient, or dot-product) used to289

built the similarity matrix. Then, we establish which similarity function (i.e.,290

Euclidean norm, Pearson’s correlation coefficient, or dot-product) should be291

associated with the Kullback-Leibler divergence to give the best overall per-292

formances. Finally, we compare the performances of our detector with the293

energy detector, a sub-optimal filter detector and the optimal matched-filter294

detector.295

4.1. Performance analysis methodology296

To build the ROC curves, it is necessary to know the distribution of297

the divergence measures under hypothesis H1. This distribution is obtained298

with Monte Carlo simulations of 50,000 experiments. The performances are299

studied through two simulated deterministic signals, namly, a periodic signal300

given by a cosine function (section 4.3) and the first component of a Rössler301

system in chaotic regime (section 4.4), as well as with a real acoustic signal302

(section 4.5). In a passive context, the duration of the signal to be detected is303

generally not known. Therefore, we study the performances where the length304

of the deterministic signal to detect is shorter than the observation time.305

The PDFs of the divergence measures under hypothesis H1 are constructed306
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when the deterministic signal occupies T % of the observation time, with307

T ∈ {10, ... , 100} (Fig 2).308

Several signal-to-noise ratios (SNRs) between - 2dB and + 4dB are also309

studied (by step of 0.5 dB). Only the most significant results are shown in310

this Letter. We recall that the SNR expressed in decibel is defined as:311

SNRdB = 10log10

1
Ls

Ls∑
i=1

s(i)2

1
Lb

Lb∑
j=1

b(j)2

(27)

where s(i) is the deterministic signal and Ls is its length, b(j) is the WGN312

and Lb is its length. Therefore, the targeted SNR is obtained by adjusting313

the variance of the WGN with respect to energy of the deterministic signal314

as follow:315

σ2
b =

(
1

Ls

Ls∑
i=1

s(i)2
)
.10−SNRdB/10 (28)

316

For each simulated signal under hypothesis H1, we compute the first four317

steps of our detection scheme to obtain the divergence measures (Fig. 1).318

The PDFs of the divergence measures under hypotheses H0 and H1 lead to319

the construction of the ROC curves, which depend on the values chosen for320

the pair (SNR, T ).321

To see where our detector is positioned relative to classical detectors from322

the literature, we compare its ROC curves with those of the energy detector,323

a sub-optimal filter detector and the optimal matched-filter detector. The324

latter two detectors will only be used when the deterministic signal is the325

periodic signal, as they can hardly be used with a chaotic signal and a real326
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acoustic signal, which have, a priori, an unknown waveform. In the next327

subsection, we recall the underlying PDFs of these three detectors under328

hypotheses H0 and H1.329

4.2. Detectors of reference330

4.2.1. Energy detector331

The energy detector is commonly used in signal processing when nothing332

is known about the signal to be detected. This detector is based on the333

random variable g, which is defined as follows:334

g =
L∑
i=1

x(ti)
2 (29)

where x(t) is the measured signal. Under hypothesis H0, the measured signal335

is WGN with zero mean and variance σ2. Therefore, the random variable336

g/σ2 has a χ2 distribution with L degrees of freedom.337

For hypothesis H1, when the deterministic signal is a cosine with length338

Ls, g is given by:339

g =
L∑
i=1

(
b(ti) + Acos(2πf0ti)rectLs(ti)

)2
(30)

with A the amplitude of the cosine, f0 its frequency and rectLs(ti) a rectan-340

gular window of length Ls. Then, the random variable g/σ2 has a noncentral341

χ2 distribution with L degrees of freedom and a noncentrality parameter342

ζ = LsA
2/2σ2 [34]. When the deterministic signal is the chaotic Rössler343

system or the real acoustic signal, the distribution of g under hypothesis H1344

is obtained empirically with Monte-Carlo simulations.345
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4.2.2. Sub-optimal filter detector346

As stated in the Introduction, when the waveform of the signal to be347

detected is perfectly know, the optimum detector is called a matched filter.348

Here, we consider the sub-optimal case where the detector includes all of349

the characteristics of the cosine signal it has to detect, excepted its duration.350

Thus the detector expects the cosine to be present 100% of the time, whereas351

it will effectively be present only T% of the time. This detector is based on352

the random variable g, which is given by:353

g =
L∑
i=1

x(ti)× Acos(2πf0ti) (31)

where L is the length of the measured signal x(t). Under hypothesis H0, the354

measured signal is WGN with zero mean and variance σ2. We can demon-355

strated that the random variable g has a normal distribution with zero mean356

and variance Lσ2A2/2 [1].357

For hypothesis H1, when the deterministic signal is a cosine with length358

Ls, g is given by:359

g =
L∑
i=1

(
b(ti) + Acos(2πf0ti).rectLs(ti)

)
× Acos(2πf0ti) (32)

and has a normal distribution with mean LsA
2/2, and variance Lσ2A2/2 [1].360

361

4.2.3. Optimal Matched-filter detector362

In this section we consider the optimal matched-filter detector, i.e. the363

detector knows all of the characteristics of the cosine signal it has to detect.364
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This detector is based on the random variable g, which is given by:365

g =
L∑
i=1

x(ti).Acos(2πf0ti).rectLs(ti) (33)

where L is the length of the measured signal x(t). Under hypothesis H0, the366

measured signal is WGN with zero mean and variance σ2. We can demon-367

strated that the random variable g has a normal distribution with zero mean368

and variance Lsσ
2A2/2 [1]. For hypothesis H1, when the deterministic signal369

is a cosine, g is given by:370

g =
L∑
i=1

(
b(ti) + Acos(2πf0ti).rectLs(ti)

)
.Acos(2πf0ti).rectLs(ti) (34)

and has a normal distribution with mean LsA
2/2, and variance Lsσ

2A2/2371

[1].372

4.3. Performances with a periodic signal373

In this section, the deterministic signal to detect is a cosine function, the374

frequency of which, f0, is randomly chosen for each experiment (uniform dis-375

tribution), so that f0/fe ∈ [0.05 0.45], where fe is the sampling frequency.376

The cosine function is added to WGN for 100 samples. Thus, the distribu-377

tions of the divergence measures obtained under hypothesis H0 in section378

3.3.2 are calculated with a WGN for 100 samples.379

We recall that for a cosine with amplitude A added to WGN with zero380

mean and variance σ2, the SNR is A2/2σ2, or in dB, 10log10(A
2/2σ2). To381

sum-up, in this section, the measured signal under hypothesis H1 is given by382

x(t) = b(t) +Acos(2πf0t)rectLs(t), where b(t) is a WGN sequence, rectLs(t)383

is a rectangular window of length Ls, A is the amplitude of the cosine, and384

f0 is the frequency of the cosine.385
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All of the results in this section are given for an embedding dimension386

m = 16 and τ = 1. However, all of the conclusions remain the same for other387

embeddings within the range [8, 20]. All of the ROC curves are identical for388

m ∈ [12 , 18].389

4.3.1. Performances as a function of the divergence measure390

First, we look at the influence of the divergence measure on the perfor-391

mances of the detector, for each similarity function taken separately.392

As ROC curves aim at showing the probability of detection (Pd) as a393

function of the probability of false alarm (pfa), the performances of a given394

detector are considered as good when its Pd is close or equal to 1 whatever395

the value of Pfa. At the contrary, performances are considered as bad when396

Pd = Pfa. Also, a detector is considered better than another detector, if397

the COR curve of the first detector is above the ROC curve of the second398

detector.399

For example, on Fig. 3, we see that for each subplot associated with400

a couple (T , SNR), the ROC curve of the detector using the Kullback-401

Leibler divergence (plain line) is above the ROC curve of the Hellinger and402

Jensen-Shannon divergences. Therefore, we can say that the detector using403

the Euclidean norm with the Kullback-Leibler divergence outperforms the404

detectors using the Euclidean norm with the Hellinger divergence and the405

Jensen-Shannon divergence (Figs. 3). The same observations and conclusions406

hold when the dot-product is used to compute the similarity matrix (Figs. 5).407

Whatever the couple (T , RSB) used for the simulations, the ROC curves of408

the detector using the dot-product with the Kullback-Leibler divergence are409

above the ROC curve with the Hellinger divergence and the Jensen-Shannon410
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divergence (Figs. 5). With these two similarity functions (i.e. Euclidean411

norm and dot-product), when the SNR is positive (three last rows of the412

panel) and Pfa ≤ 10−3, the detection probability with the Kullback-Leibler413

divergence is 10% to 50% greater than those obtained with the Hellinger414

divergence and Jensen-Shannon divergence.415

When Pearson’s correlation coefficient is used, the Kullback-Leibler di-416

vergence is slightly better than the Hellinger divergence and Jensen-Shannon417

divergence (Fig. 4).418

According to these results, for the remainder of this section 4.3, we have419

chosen the Kullback-Leibler divergence to compare the analytic and empirical420

PDFs of the similarity matrix coefficients, whichever similarity function is421

used to compute the similarity matrix.422

4.3.2. Performances as a function of the similarity function423

We now look at the similarity function that gives the best results for424

the detector, when the Kullback-Leibler divergence is used to compare the425

analytic and empirical distributions. We compare ROC curves of the de-426

tectors having the following configurations: {Euclidean Norm, Kullback-427

Leibler}, {Pearson’s correlation coefficient, Kullback-Leibler}, {dot-product,428

Kullback-Leibler} (Fig. 6).429

For all of the combinations of SNR and T , the detector using the dot-430

product performs the best, followed by the detector with the Euclidean norm,431

and then last, the detector using Pearson’s correlation coefficient. When the432

Pfa is around 10−4, the detection probability of the detector using the dot-433

product is 10% to 25% higher than the detector with the Euclidean norm,434

and 10% to 80% higher than that with Pearson’s correlation coefficient, which435
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depends on the values given to the pair (RSB, T ). For a given SNR, we find436

for all similarity functions that the data change quickly when T increases.437

The same observation is made when T is constant and the SNR increases by438

a few decibels.439

4.3.3. Comparison with the detectors of reference440

The proposed detector with the dot-product and Kullback-Leibler diver-441

gence is compared with the energy detector and the matched-filter detector,442

in terms of their ROC curves (Fig. 7). For all of the SNR values > 0, the443

performances of the proposed detector are higher than those of the energy444

detector, whatever the length T of the cosine. For a Pfa around 10−4 the445

difference in terms of the detection probability between both of the detectors446

is between 0.05 and 0.45, depending on the SNR and T .447

For most of the (SNR, T ) combinations, the proposed detector has a448

similar performance to the sub-optimal filter detector. Our detector is sig-449

nificantly better than the sub-optimal filter detector only when the cosine is450

very short (T ≤ 30 %) and has a SNR > 2 dB. However, the performances451

of the proposed detector are far behind those of the optimal matched-filter452

detector.453

These performances for the proposed detector can be explained as follows.454

As the similarity matrix is computed by splitting the signal into several state455

space vectors, when hypothesis H1 is true, some of these vectors correspond456

to the signal we want to detect. Therefore, our detector is self-fed by vectors457

associated with the useful signal and is locally equivalent to a matched-filter458

detector. If a state space vector
−−−→
sm(ti) that contains samples from the deter-459

ministic signal is compared to a vector
−−−→
sm(tj) that has only noise samples,460
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then the coefficient (i, j) of the similarity matrix belongs to the PDF associ-461

ated with the noise-only case. For the opposite, if vector
−−−→
sm(tj) also contains462

samples from the deterministic signal, we are back under hypothesis H1 of a463

classical matched filter. In the end, some of the coefficients of the similar-464

ity matrix correspond to hypothesis H0 and follow the analytic distribution465

derived above in the noise-only case, while the remaining coefficients corre-466

spond to hypothesis H1 and do not follow this analytic distribution. The467

empirical PDF of the coefficients of the similarity matrix differs significantly468

from the one that would be expected in the noise-only case, and the deter-469

ministic signal is detected, even when this latter is short and has a poor SNR.470

471

4.4. Performances with a Rössler system in chaotic regime472

In this section, the deterministic signal to detect is the first component473

(or x-component) of a Rössler system. This system is defined by:474

ẋ = −y − z (35)

ẏ = x+ ay (36)

ż = b+ z(x− c) (37)

We take a = 0.15, b = 0.2 and c = 10, so that it has a chaotic behavior. The475

sampling time ∆t is equal to 0.4 s. The component x(t) is added to WGN476

for 200 samples, so that the Rössler system has enough time to oscillate477

during a few periods, even when it occupies a small percentage T of the ob-478

servation time. Thus, the distributions of the divergence measures obtained479

under hypothesis H0 in section 3.3.2 are now calculated with a WGN for 200480

samples. The SNR is adjusted according to Eq. (28). For each realization481
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of the Monte-Carlo simulations, the initial conditions [x(0), y(0), z(0)] are482

randomly chosen with uniform distribution within the range [-5 , 5] in order483

to get various waveform for x(t).484

We approach this part through two points of view. In section 4.4.1, we do485

not take into account that x(t) is part of a 3-components system and study486

the performances of the detector as we did with the cosine, i.e. with τ = 1487

and m ∈ [8, 20]. Then, in section 4.4.2, we take into account that x(t) comes488

from a 3-components system and so that its phase space trajectory can be489

reconstructed with m = 3. Thus, in 4.4.2 we study the performances for490

m = 3 and τ ∈ [2, 9].491

492

4.4.1. Case 1: τ = 1, m ∈ [8, 20]493

We do not show all the ROC curves as we did in the previous section,494

but only give a summary of the main results. All of the results are given for495

an embedding dimension m = 16. However, all of the conclusions remain the496

same for other embeddings within the range [8, 20].497

As for the periodic signal in section 4.3, we first looked at the divergence498

measure giving the best detection performances, for each similarity function499

taken separately. Results and conclusions remain the same as for the periodic500

signal, namely that whatever the similarity function Sim(. .) used to calcu-501

late the similarity matrix, the Kullback-Leibler divergence always gives the502

best detection capabilities. The Hellinger divergence and Jensen-Shannon503

divergence have much lower performances than Kullback-Leibler divergence.504

Secondly, when the Kullback-Leibler divergence is used as a divergence505

measure, then the best overall detection performances are again obtained506
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with the dot-product as Sim(. .) function to compute the distance matrix.507

Finally, on Fig. 8, we compare the COR curves of the energy detector with508

those of the proposed method with the dot-product and Kullback-Leibler509

divergence. We see on this figure that whatever the couple (T , RSB) chosen,510

the proposed detector always outperforms the energy detector. For Pfa <511

10−3, the probability of detection of proposed detector is 20 % to 50 % higher512

than the one of the energy detector.513

514

4.4.2. Case 2: τ ∈ [2, 9], m = 3515

All of the results in this section are given for m = 3 and τ = 3. However,516

all of the conclusions remain the same for other τ within the range [2, 9].517

Like in previous sections, we found that Kullback-Leibler divergence is the518

divergence measure that gives the best detection performances. Then, we no-519

ticed that by associating the Kullback-Leibler divergence with the Euclidean520

norm, we get slightly better performances than by combining Kullback-521

Leibler divergence with the dot-product (see Fig. 9). The probability of522

detection increases only by a few percent between the dot-product and the523

Euclidean norm. At last, when comparing the proposed detector with the en-524

ergy detector, we see that the energy detector and the proposed detector with525

{Euclidean norm, Kullback-Leibler divergence} give very similar results and526

that the energy detector is slightly better than the proposed detector with527

{dot-product, Kullback-Leibler divergence} (Fig. 9).528

529

4.5. Performances with a real acoustic signal530

In this section, we test the performances of the proposed detector with a531
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real underwater acoustic signal that was recorded in the Mediterranean Sea in532

August 2014. This sound, whose waveform is given on Fig. 2g, was produced533

by a fish. As the background noise mixed with the fish sound is not a true534

WGN, the necessary assumptions given in section 3.2.1 are not met and so535

we could not retrieve the theoretical distributions we found previously under536

H0 hypothesis. Therefore, we have extracted the fish sound and add it with a537

simulated WGN. Like for previous simulations we change the duration of the538

noise so that the fish sound occupies T % of the observation time. Various539

SNR are also tested, according to Eq. (28).540

Fig. 10 shows the COR curves of the proposed detector with τ = 1,541

m = 16, the dot-product as similarity function and the Kullback-Leibler542

divergence as divergence measure. Like for the periodic signal and for the543

Rössler system, the proposed detector outperforms the energy detector for544

all couples (T , RSB).545

5. Conclusion546

This Letter has presented a scheme that is based on statistical analysis547

of the similarity matrix coefficients and on divergence measures to detect an548

unknown deterministic signal in WGN. Under hypothesis H0, the distribu-549

tion of the similarity matrix coefficients was derived analytically for three550

similarity functions: the Euclidean norm, Pearson’s correlation coefficients,551

and the dot-product. Then, divergence measures were used to compare this552

analytic distribution with the empirical distribution of a measured signal for553

which we wanted to apply the detection test. Three divergence measures554

were tested in this study: Kullback-Leibler divergence, Hellinger divergence,555

and Jensen-Shannon divergence. The performance of the detector was stud-556
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ied through ROC curves. The influences of similarity functions, divergence557

measures, length of the deterministic signal, and the SNR were discussed.558

We found that the Kullback-Leibler divergence was always the divergence559

measure giving, in the end, the best results. The best overall performances560

are obtained when this divergence is used with the dot-product as simi-561

larity function. The proposed detector provided with the dot-product and562

the Kullback-Leibler divergence was compared with the energy detector, a563

sub-optimal filter detector and the optimal matched-filter detector. The re-564

sults with two simulated deterministic signal, namely a periodic signal and a565

chaotic Rössler system, as well as with a real underwater acoustic signal show566

that the proposed detector has a much better detection probability than the567

energy detector and similar performance to the sub-optimal filter detector.568

At last, results shown in this Letter and our own experience on other real569

signals indicate that by performing a statistical analysis of similarity matrix570

coefficients we get enhanced detection performances relative to the classical571

energy detector, independently of the kind of the deterministic signal to be572

detected.573
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Figure 1: Flowchart of the detector system.

32



0 20 40 60 80
2

0

2

4

C
os

in
e

20 40 60 80 100

2

0

2

N
oi

se
 

0 50 100
4

2

0

2

4

Sample indices

N
oi

se
 +

 C
os

in
e

0 50 100 150 200
20

10

0

10

20

R
ös

sl
er

0 50 100 150 200
20

10

0

10

20

N
oi

se
 

0 50 100 150 200
20

10

0

10

20

Sample indices

N
oi

se
 +

 R
ös

sl
er

0 100 200 300 400 500
0.01

0.005

0

0.005

0.01

Fi
sh

 so
un

d

0 100 200 300 400 500
0.01

0.005

0

0.005

0.01

N
oi

se
 

0 100 200 300 400 500
0.01

0.005

0

0.005

0.01

Sample indices

N
oi

se
 +

 F
is

h 
so

un
d

a) d) g)

h)e)b)

c) f) i)

Cosine existing T % 
of the observation time

Noise measured 
during 100 samples

Figure 2: Under hypothesis H1, the deterministic signal to detect that lasts T% of the

observation time, T ∈ {10, 15, 20, ..., 80, 100}, is added to WGN. a-c) Example with

the cosine function used in section 4.3; d-f) Example with a chaotic signal from a Rössler

system used in section 4.4 ; g-i) Example with the waveform of the sound produced by a

fish used in section 4.5. Figures c,f,i correspond to an SNR of 3 dB.
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Figure 3: ROC curves based on the Euclidean norm as a function of the SNR (rows of pan-

els), the length T of the cosine (columns of panels), and the Kullback-Leibler (plain line),

Hellinger (�), and Jensen-Shannon (+) divergence measures. The data for the Hellinger

and Jensen-Shannon divergences are superimposed. The Kullback-Leibler divergence al-

ways outperforms the Hellinger and Jensen-Shannon divergences.

34



10 510 410 310 210 1 1000
0.2
0.4
0.6
0.8

1
Pd

Pfa

T = 20 %

10 510 410 310 210 1 1000
0.2
0.4
0.6
0.8

1

Pd

Pfa

T = 30 %

10 510 410 310 210 1 1000
0.2
0.4
0.6
0.8

1

Pd

Pfa

T = 40 %

10 510 410 310 210 1 1000
0.2
0.4
0.6
0.8

1

Pd

Pfa
10 510 410 310 210 1 1000

0.2
0.4
0.6
0.8

1
Pd

Pfa
10 510 410 310 210 1 1000

0.2
0.4
0.6
0.8

1

Pd
Pfa

10 510 410 310 210 1 1000
0.2
0.4
0.6
0.8

1

Pd

Pfa
10 510 410 310 210 1 1000

0.2
0.4
0.6
0.8

1

Pd

Pfa
10 510 410 310 210 1 1000

0.2
0.4
0.6
0.8

1
Pd

Pfa

10 510 410 310 210 1 1000
0.2
0.4
0.6
0.8

1

Pd

Pfa
10 510 410 310 210 1 1000

0.2
0.4
0.6
0.8

1

Pd

Pfa
10 510 410 310 210 1 1000

0.2
0.4
0.6
0.8

1

Pd

Pfa

SNR = 2 dB

SNR = 0 dB

SNR = 2 dB

SNR = 4 dB

Figure 4: ROC curves based on Pearson’s correlation coefficient as a function of the SNR

(rows of panels), the length T of the cosine (columns of panels) and the Kullback-Leibler

(plain line), Hellinger (�), and Jensen-Shannon (+) divergence measures. The data for the

Hellinger and Jensen-Shannon divergences are superimposed.35
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Figure 5: ROC curves based on the dot-product as a function of the SNR (rows of pan-

els), the length T of the cosine (columns of panels) and the Kullback-Leibler (plain line),

Hellinger (�), and Jensen-Shannon (+) divergence measures. The data for the Hellinger

and Jensen-Shannon divergences are superimposed. The Kullback-Leibler divergence al-

ways outperforms the Hellinger and Jensen-Shannon divergences.
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Figure 6: ROC curves of the detector as a function of the SNR (rows of panels) and

the length T of the cosine (columns of panels), when the Kullback-Leibler divergence is

associated with: the Euclidean norm (�), Pearson’s correlation coefficient (+), the dot-

product (plain line). Combination of the dot-product with the Kullback-Leibler divergence

always gives the best performance.
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Figure 7: ROC curves of the proposed detector using {dot-product, Kullback-Leibler}

(plain line) with the energy detector (�), the sub-optimal filter (+), the optimal matched

filter (o). The proposed detector always outperforms the energy detector, and globally it

is as good as the sub-optimal filter detector.
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Figure 8: ROC curves of the proposed detector using {τ = 1, m = 16, dot-product,

Kullback-Leibler} (plain line) with the energy detector (�), when the deterministic signal

to detect is a chaotic Rössler system. The proposed detector always outperforms the

energy detector.
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Figure 9: ROC curves of the proposed detector using {τ = 3, m = 3, dot-product,

Kullback-Leibler} (plain line), {τ = 3, m = 3, Euclidean norm, Kullback-Leibler} (+)

and the energy detector (�), when the deterministic signal to detect is a chaotic Rössler

system.
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Figure 10: ROC curves of the proposed detector using {τ = 1, m = 16, dot-product,

Kullback-Leibler} (plain line) with the energy detector (�), when the deterministic signal

to detect is a sound produced by a fish. The proposed detector always outperforms the

energy detector.
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