MODEL SELECTION IN LOGISTIC REGRESSION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

MODEL SELECTION IN LOGISTIC REGRESSION

Résumé

This paper is devoted to model selection in logistic regression. We extend the model selection principle introduced by Birgé and Massart (2001) to logistic regression model. This selection is done by using penalized maximum likelihood criteria. We propose in this context a completely data-driven criteria based on the slope heuristics. We prove non asymptotic oracle inequalities for selected estimators. Theoretical results are illustrated through simulation studies.
Fichier principal
Vignette du fichier
logit_histo_soumis.pdf (249.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01188376 , version 1 (29-08-2015)

Identifiants

Citer

Marius Kwemou, Marie-Luce Taupin, Anne-Sophie Tocquet. MODEL SELECTION IN LOGISTIC REGRESSION. 2015. ⟨hal-01188376⟩
312 Consultations
518 Téléchargements

Altmetric

Partager

More