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MODEL SELECTION IN LOGISTIC REGRESSION

MARIUS KWEMOU(1), MARIE-LUCE TAUPIN(1)(2), ANNE-SOPHIE TOCQUET(1)

Abstract. This paper is devoted to model selection in logistic regression. We extend the model
selection principle introduced by Birgé and Massart (2001) to logistic regression model. This
selection is done by using penalized maximum likelihood criteria. We propose in this context a
completely data-driven criteria based on the slope heuristics. We prove non asymptotic oracle
inequalities for selected estimators. Theoretical results are illustrated through simulation studies.
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1. Introduction

Consider the following generalization of the logistic regression model : let (Y1, x1), · · · , (Yn, xn),
be a sample of size n such that (Yi, xi) ∈ {0, 1} × X and

E f0(Yi) = π f0(xi) =
exp f0(xi)

1 + exp f0(xi)
,

where f0 is an unknown function to be estimated and the design points x1, ..., xn are determinis-
tic. This model can be viewed as a nonparametric version of the ”classical” logistic model which
relies on the assumption that xi ∈ R

d, and that there exists β0 ∈ R
d such that f0(xi) = β>0 xi.

Logistic regression is a widely used model for predicting the outcome of binary dependent
variable. For example logistic model can be used in medical study to predict the probability
that a patient has a given disease (e.g. cancer), using observed characteristics (explanatory
variables) of the patient such as weight, age, patient’s gender etc. However in the presence
of numerous explanatory variables with potential influence, one would like to use only a few
number of variables, for the sake of interpretability or to avoid overfitting. But it is not always
obvious to choose the adequate variables. This is the well-known problem of variables selection
or model selection.

In this paper, the unknown function f0 is not specified and not necessarily linear. Our aim is
to estimate f0 by a linear combination of given functions, often called dictionary. The dictionary
can be a basis of functions, for instance spline or polynomial basis.

A nonparametric version of the classical logistic model has already been considered by Hastie
(1983), where a nonparametric estimator of f0 is proposed using local maximum likelihood. The
problem of nonparametric estimation in additive regression model is well known and deeply
studied. But in logistic regression model it is less studied. One can cite for instance Lu (2006),
Vexler (2006), Fan et al. (1998), Farmen (1996), Raghavan (1993), and Cox (1990).
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Recently few papers deal with model selection or nonparametric estimation in logistic re-
gression using `1 penalized contrast Bunea (2008), Bach (2010), van de Geer (2008), Kwemou
(2012). Among them, some establish non asymptotic oracle inequalities that hold even in high
dimensional setting. When the dimension of X is high, that is greater than dozen, such `1 pe-
nalized contrast estimators are known to provide reasonably good results. When the dimension
of X is small, it is often better to choose different penalty functions. One classical penalty func-
tion is what we call `0 penalization. Such penalty functions, built as increasing function of the
dimension of X, usually refers to model selection. The last decades have witnessed a growing
interest in the model selection problem since the seminal works of Akaike (1973), Schwarz
(1978). In additive regression one can cite among the others Baraud (2000a), Birgé and Massart
(2001), Yang (1999), in density estimation Birgé (2014), Castellan (2003a) and in segmentation
problem Lebarbier (2005), Durot et al. (2009), and Braun et al. (2000). All the previously cited
papers use `0 penalized contrast to perform model selection. But model selection procedures
based on penalized maximum likelihood estimators in logistic regression are less studied in the
literature.

In this paper we focus on model selection using `0 penalized contrast for logistic regres-
sion model and in this context we state non asymptotic oracle inequalities. More precisely,
given some collection functions, we consider estimators of f0 built as linear combination of the
functions. The point that the true function is not supposed to be linear combination of those
functions, but we expect that the spaces of linear combination of those functions would provide
suitable approximation spaces. Thus, to this collection of functions, we associate a collection
of estimators of f0. Our aim is to propose a data driven procedure, based on penalized criterion,
which will be able to choose the ”best” estimator among the collection of estimators, using `0

penalty functions.
The collection of estimators is built using minimisation of the opposite of logarithm likeli-

hood. The properties of estimators are described in term of Kullback-Leibler divergence and
the empirical L2 norm. Our results can be splitted into two parts.

First, in a general model selection framework, with general collection of functions we pro-
vide a completely data driven procedure that automatically selects the best model among the
collection. We state non asymptotic oracle inequalities for Kullback-Leibler divergence and
the empirical L2 norm between the selected estimator and the true function f0. The estimation
procedure relies on the building of a suitable penalty function, suitable in the sense that it per-
forms best risks and suitable in the sense that it does not depend on the unknown smoothness
parameters of the true function f0. But, the penalty function depends on a bound related to
target function f0. This can be seen as the price to pay for the generality. It comes from needed
links between Kullback-Leibler divergence and empirical L2 norm.

Second, we consider the specific case of collection of piecewise functions which provide es-
timator of type regressogram. In this case, we exhibit a completely data driven penalty, free
from f0. The model selection procedure based on this penalty provides an adaptive estimator
and state a non asymptotic oracle inequality for Hellinger distance and the empirical L2 norm
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between the selected estimator and the true function f0. In the case of piecewise constant func-
tions basis, the connection between Kullback-Leibler divergence and the empirical L2 norm are
obtained without bound on the true function f0. This last result is of great interest for example in
segmentation study, where the target function is piecewise constant or can be well approximated
by piecewise constant functions.

Those theoretical results are illustrated through simulation studies. In particular we show that
our model selection procedure (with the suitable penalty) have good non asymptotic properties
as compared to usual known criteria such as AIC and BIC. A great attention has been made on
the practical calibration of the penalty function. This practical calibration is mainly based on
the ideas of what is usually referred as slope heuristic as proposed in Birgé and Massart (2007)
and developed in Arlot and Massart (2009).

The paper is organized as follow. In Section 2 we set our framework and describe our esti-
mation procedure. In Section 3 we define the model selection procedure and state the oracle
inequalities in the general framework. Section 4 is devoted to regressogram selection, in this
section, we establish a bound of the Hellinger risk between the selected model and the target
function. The simulation study is reported in Section 5. The proofs of the results are postponed
to Section 6 and 7.

2. Model and framework

Let (Y1, x1), · · · , (Yn, xn), be a sample of size n such that (Yi, xi) ∈ {0, 1} × X. Throughout the
paper, we consider a fixed design setting i.e. x1, . . . , xn are considered as deterministic. In this
setting, consider the extension of the ”classical” logistic regression model (2.1) where we aim
at estimating the unknown function f0 in

E f0(Yi) = π f0(xi) =
exp f0(xi)

1 + exp f0(xi)
.(2.1)

We propose to estimate the unknown function f0 by model selection. This model selection
is performed using penalized maximum likelihood estimators. In the following we denote by
P f0(x1) the distribution of Y1 and by P(n)

f0
(x1, · · · , xn) the distribution of (Y1, . . . ,Yn) under Model

(2.1). Since the variables Yi’s are independent random variables,

P(n)
f0

(x1, · · · , xn) = Πn
i=1P f0(xi) =

n∏
i=1

π f0(xi)Yi(1 − π f0(xi))1−Yi .

It follows that for a function f mapping X into R, the likelihood is defined as:

Ln( f ) = P(n)
f (x1, · · · , xn) =

n∏
i=1

π f (xi)Yi(1 − π f (xi))1−Yi ,

where

π f (xi) =
exp ( f (xi))

1 + exp( f (xi))
.(2.2)
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We choose the opposite of the log-likelihood as the estimation criterion that is

γn( f ) = −
1
n

log(Ln( f )) =
1
n

n∑
i=1

{
log(1 + e f (xi)) − Yi f (xi)

}
.(2.3)

Associated to this estimation criterion we consider the Kullback-Leibler information divergence
K(P(n)

f0
,P(n)

f ) defined as

K(P(n)
f0
,P(n)

f ) =
1
n

∫
log

P(n)
f0

P(n)
f

 dP(n)
f0
.

The loss function is the excess risk, defined as

E( f ) := γ( f ) − γ( f0) where, for any f , γ( f ) = E f0[γn( f )].(2.4)

Easy calculations show that the excess risk is linked to the Kullback-Leibler information diver-
gence through the relation

E( f ) = γ( f ) − γ( f0) = K(P(n)
f0
,P(n)

f ).

It follows that, f0 minimizes the excess risk, that is

f0 = arg min
f
γ( f ).

As usual, one can not estimate f0 by the minimizer of γn( f ) over any functions space, since it
is infinite. The usual way is to minimize γn( f ) over a finite dimensional collections of models,
associated to a finite dictionary of functions φ j : X → R

D = {φ1, . . . , φM}.

For the sake of simplicity we will suppose that D is a orthonormal basis of functions. Indeed,
if D is not an orthonormal basis of functions, we can always find an orthonormal basis of
functionsD′ = {ψ1, . . . , ψM′} such that

〈φ1, . . . , φM〉 = 〈ψ1, . . . , ψM′〉.

LetM the set of all subsets m ⊂ {1, . . . ,M}. For every m ∈ M, we call Sm the model

(2.5) Sm :=
{
fβ =

∑
j∈m

β jφ j

}
and Dm the dimension of the span of {φ j, j ∈ m}. Given the countable collection of models
{Sm}m∈M, we define { f̂m}m∈M the corresponding estimators, i.e. the estimators obtaining by
minimizing γn over each model Sm. For each m ∈ M, f̂m is defined by

(2.6) f̂m = arg min
t∈Sm

γn(t).

Our aim is choose the ”best” estimator among this collection of estimators, in the sense that
it minimizes the risk. In many cases, it is not easy to choose the ”best” model. Indeed, a
model with small dimension tends to be efficient from estimation point of view whereas it could
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be far from the ”true” model. On the other side, a more complex model easily fits data but the
estimates have poor predictive performance (overfitting). We thus expect that this best estimator
mimics what is usually called the oracle defined as

(2.7) m∗ = arg min
m∈M
K(P(n)

f0
,P(n)

f̂m
).

Unfortunately, both, minimizing the risk and minimazing the kulback-leibler divergence, re-
quire the knowledge of the true (unknown) function f0 to be estimated.

Our goal is to develop a data driven strategy based on data, that automatically selects the
best estimator among the collection, this best estimator having a risk as close as possible to
the oracle risk, that is the risk of f̂m∗ . In this context, our strategy follows the lines of model
selection as developed by Birgé and Massart (2001). We also refer to the book Massart (2007)
for further details on model selection.

We use penalized maximum likelihood estimator for choosing some data-dependent m̂ nearly
as good as the ideal choice m∗. More precisely, the idea is to select m̂ as a minimizer of the
penalized criterion

(2.8) m̂ = arg min
m∈M

{
γn( f̂m) + pen(m)

}
,

where pen : M −→ R+ is a data driven penalty function. The estimation properties of f̂m are
evaluated by non asymptotic bounds of a risk associated to a suitable chosen loss function. The
great challenge is choosing the penalty function such that the selected model m̂ is nearly as good
as the oracle m∗. This penalty term is classically based on the idea that

m∗ = arg min
m∈M
E f0K(P(n)

f0
,P(n)

f̂m
) = arg min

m∈M

[
E f0K(P(n)

f0
,P(n)

fm
) + E f0K(P(n)

fm
,P(n)

f̂m
)
]

where fm is defined as
fm = arg min

t∈S m
γ(t).

Our goal is to build a penalty function such that the selected model m̂ fulfills an oracle inequal-
ity:

K(P(n)
f0
,P(n)

f̂m̂
) ≤ Cn inf

m∈M
K(P(n)

f0
,P(n)

f̂m
) + Rn.

This inequality is expected to hold either in expectation or with high probability, where Cn is as
close to 1 as possible and Rn is a remainder term negligible compared to K(P(n)

f0
,P(n)

f̂m∗
).

In the following we consider two separated case. First we consider general collection of
models under boundedness assumption. Second we consider the specific case of regressogram
collection.

3. Oracle inequality for general models collection under boundedness assumption

Consider model (2.1) and (Sm)m∈M a collection of models defined by (2.5). Let C0 > 0 and
L∞(C0) =

{
f : X → R, max16i6n | f (xi)| 6 C0

}
. For m ∈ M, γn given in (2.3), and γ is given by
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(2.4), we define

(3.9) f̂m = arg min
t∈Sm∩L∞(C0)

γn(t) and fm = arg min
t∈S m∩L∞(C0)

γ(t).

The first step consists in studying the estimation properties of f̂m for each m, as it is stated in
the following proposition.

Proposition 3.1. Let C0 > 0 andU0 = eC0/(1 + eC0)2. For m ∈ M, let f̂m and fm as in (3.9). We
have

E f0[K(P(n)
f0
,P(n)

f̂m
)] 6 K(P(n)

f0
,P(n)

fm
) +

Dm

2nU2
0

This proposition says that the ”best” estimator amoung the collection { f̂m}m∈M, in the sense of
the Kullback-Leibler risk, is the one which makes a balance between the bias and the complexity
of the model. In the ideal situation where f0 belongs to Sm, we have that

E f0[K(P(n)
f0
,P(n)

f̂m
)] 6

1
U2

0

Dm

2n
.

To derive the model selection procedure we need the following assumption :

There exists a constant 0 < c1 < ∞ such that max
16i6n
| f0(xi)| 6 c1.(A1)

In the following theorem we propose a choice for the penalty function and we state non asymp-
totic risk bounds.

Theorem 3.1. Given C0 > 0, for m ∈ M, let f̂m and fm be defined as (3.9). Let us denote
‖ f ‖2n= n(−1) ∑n

i=1 f 2(xi). Let {Lm}m∈M some positive numbers satisfying

Σ =
∑
m∈M

exp(−LmDm) < ∞.

We define pen :M→ R+ , such that, for m ∈ M,

pen(m) > λ
Dm

n

(
1
2

+
√

5Lm

)2

,

where λ is a positive constant depending on c1. Under Assumption (A1) we have

E f0[K(P(n)
f0
,P(n)

f̂m̂
)] 6 C inf

m∈M

{
K(P(n)

f0
,P(n)

fm
) + pen(m)

}
+ C1

Σ

n

and

E f0 ‖ f̂m̂ − f0 ‖
2
n6 C′ inf

m∈M

{
‖ f0 − fm ‖

2
n +pen(m)

}
+ C′1

Σ

n
.

where C,C′,C1,C′1 are constants depending on c1 and C0.
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This theorem provides oracle inequalities for L2−norm and for K-L divergence between the
selected model and the true function. Provided that penalty has been properly chosen, one can
bound the L2−norm and the K-L divergence between the selected model and the true function.
The inequalities in Theorem 3.1 are non-asymptotic inequalities in the sense that the result is
obtain for a fixed n. This theorem is very general and does not make specific assumption on the
dictionary. However, the penalty function depends on some unknown constant λ which depends
on the bound of the true function f0 through Condition (6.5). In practice this constant can be
calibrated using ”slope heuristics” proposed in Birgé and Massart (2007). In the following we
will show how to obtain similar result with a penalty function not connected to the bound of the
true unknown function f0 in the regressogram case.

4. Regressogram functions

4.1. Collection of models. In this section we suppose (without loss of generality) that f0 :
[0, 1] → R. For the sake of simplicity, we use the notation f0(xi) = f0(i) for every i = 1, . . . , n.
Hence f0 is defined from {1, . . . , n} to R. Let M be a collection of partitions of intervals of
X = {1, . . . , n}. For any m ∈ M and J ∈ m, let 1IJ denote the indicator function of J and S m

be the linear span of {1IJ, J ∈ m}. When all intervals have the same length, the partition is said
regular, and is is irregular otherwise.

4.2. Collection of estimators: regressogram. For a fixed m, the minimizer f̂m of the empirical
contrast function γn, over S m, is called the regressogram. That is, f0 is estimated by f̂m given by

f̂m = arg min
f∈S m

γn( f ).(4.10)

where γn is given by (2.3). Associated to S m we have

fm = arg min
f∈S m

γ( f ) − γ( f0) = arg min
f∈S m
K(P(n)

f0
,P(n)

f ).(4.11)

In the specific case where S m is the set of piecewise constant functions on some partition m, f̂m

and fm are given by the following lemma.

Lemma 4.1. For m ∈ M , let fm and f̂m be defined by (4.11) and (4.10) respectively . Then,
fm =

∑
J∈m f

(J)
m 1IJ and f̂m =

∑
J∈m f̂ (J)

m 1IJ with

f
(J)
m = log

( ∑
i∈J π f0(xi)

|J|(1 −
∑

i∈J π f0(xi)/|J|)

)
and f̂ (J)

m = log
( ∑

i∈J Yi

|J|(1 −
∑

i∈J Yi/|J|)

)
.

Moreover, π fm =
∑

J∈m π
(J)
fm

1IJ and π f̂m =
∑

J∈m π
(J)
f̂m

1IJ with

π(J)
fm

=
1
|J|

∑
i∈J

π f0(xi), and π(J)
f̂m

=
1
|J|

∑
i∈J

Yi.

Consequently, π fm = arg minπ∈S m ‖ π − π f0 ‖
2
n is the usual projection of π f0 on to S m.
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4.3. First bounds on f̂m. Consider the following assumptions:

There exists a constant ρ > 0 such that min
i=1,··· ,n

π f0(xi) ≥ ρ and min
i=1,··· ,n

[1 − π f0(xi)] ≥ ρ.(A2)

Proposition 4.1. Consider Model (2.1) and let f̂m be defined by (4.10) with m such that for all
J ∈ m, |J| > Γ[log(n)]2 for a positive constant Γ. Under Assumption (A2), for all δ > 0 and
a > 1, we have

E f0[K(P(n)
f0
,P(n)

f̂m
)] 6 K(P(n)

f0
,P(n)

fm
)) +

(1 + δ)Dm

(1 − δ)2n
+
κ(Γ, ρ, δ)

na .

4.4. Adaptive estimation and oracle inequality. The following result provides an adaptive
estimation of f0 and a risk bound of the selected model.

Definition 4.1. LetM be a collection of partitions ofX = {1, . . . , n} constructed on the partition
m f i.e. m f is a refinement of every m ∈ M.

In other words, a partition m belongs toM if any element of m is the union of some elements
of m f . Thus S m f contains every model of the collection {S m}m∈M.

Theorem 4.1. Consider Model (2.1) under Assumption (A2). Let {S m,m ∈ M} be a collection
of models defined in Section 4.1 whereM is a set of partitions constructed on the partition m f

such that

(4.1) for all J ∈ m f , |J| ≥ Γ log2(n),

where Γ is a positive constant. Let (Lm)m∈M be some family of positive weights satisfying

(4.2) Σ =
∑
m∈M

exp(−LmDm) < +∞.

Let pen :M→ R+ satisfying for m ∈ M, and for µ > 1,

pen(m) > µ
Dm

n

(
1 + 6Lm + 8

√
Lm

)
.

Let f̃ = f̂m̂ where
m̂ = arg min

m∈M

{
γn( f̂m) + pen(m)

}
,

then, for Cµ = 2µ1/3/(µ1/3 − 1), we have

(4.3) E f0[h
2(P(n)

f0
,P(n)

f̃
)] 6 Cµ inf

m∈M

{
K(P(n)

f0
,P(n)

fm
) + pen(m)

}
+

C(ρ, µ,Γ,Σ)
n

.

This theorem provides a non asymptotic bound for the Hellinger risk between the selected
model and the true one. On the opposite of Theorem 3.1, the penalty function does not depend
on the bound of the true function. The selection procedure based only on the data offers the
advantage to free the estimator from any prior knowledge about the smoothness of the func-
tion to estimate. The estimator is therefore adaptive. As we bound Hellinger risk in (4.3) by
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Kulback-Leibler risk, one should prefer to have the Hellinger risk on the right hand side in-
stead of the Kulback-Leibler risk. Such a bound is possible if we assume that log(‖π f0/ρ‖∞) is
bounded. Indeed if we assume that there exists T such that log(‖π f0/ρ‖∞) ≤ T , this implies that
log(‖π f0/π fm‖∞) ≤ T uniformly for all partitions m ∈ M. Now using Inequality (7.6) p. 362 in
Birgé and Massart (1998) we have that K(P(n)

f0
,P(n)

fm
) ≤ (4 + 2 log(M))h2(P f0 ,P fm) which implies,

E f0[h
2(P(n)

f0
,P(n)

f̃
)] 6 Cµ.C(T ) inf

m∈M

{
h2(P(n)

f0
,P(n)

fm
) + pen(m)

}
+

C(ρ, µ,Γ,Σ)
n

.

Choice of the weights {Lm,m ∈ M}. According to Theorem 4.1, the penalty function depends
on the collectionM through the choice of the weights Lm satisfying (4.2), i.e.

(4.4) Σ =
∑

m∈−M

exp(−LmDm) =
∑
D≥1

e−LDDCard{m ∈ M, |m| = D} < ∞.

Hence the number of models having the same dimension D plays an important role in the risk
bound.

If there is only one model of dimension D, a simple way of choosing LD is to take them
constant, i.e. LD = L for all m ∈ M, and thus we have from (4.4)

Σ =
∑
D≥1

e−LD < ∞.

This is the case whenM is a family of regular partitions. Consequently, the choice i.e. LD = L
for all m ∈ M leads to a penalty proportional to the dimension Dm, and for every Dm ≥ 1,

(4.5) pen(m) = µ
(
1 + 6L + 8

√
L
)Dm

n
= c ×

Dm

n
.

In the more general context, that is in the case of irregular partitions, the numbers of models
having the same dimension D is exponential and satisfies

Card
{
m ∈ M, |m| = D

}
=

(
n − 1
D − 1

)
≤

(
n
D

)
.

In that case we choose Lm depending on the dimension Dm. With L depending on D, Σ in (4.2)
satisfies

Σ =
∑
D≥1

e−LDDCard{m ∈ M, |m| = D}

≤
∑
D≥1

e−LDD

(
n
D

)
≤

∑
D≥1

e−LDD
(en

D

)D

≤
∑
D≥1

e
−D

(
LD−1−log ( n

D )
)
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So taking LD = 2 + log ( n
D ) leads to Σ < ∞ and the penalty becomes

(4.6) pen(m) = µ × penshape(m),

where

(4.7) penshape(m) =
Dm

n

[
13 + 6 log

( n
Dm

)
+ 8

√
2 + log

( n
Dm

)]
.

The constant µ can be calibrated using the slope heuristics Birgé and Massart (2007) (see Sec-
tion 5.2).

Remark 4.1. In Theorem 4.1, we do not assume that the target function f0 is piecewise constant.
However in many contexts, for instance in segmentation, we might want to consider that f0 is
piecewise constant or can be well approximated by piecewise constant functions. That means
there exists of partition of X within which the observations follow the same distribution and
between which observations have different distributions.

5. Simulations

In this section we present numerical simulation to study the non-asymptotic properties of the
model selection procedure introduced in Section 4.4. More precisely, the numerical properties
of the estimators built by model selection with our criteria are compared with those of the
estimators resulting from model selection using the well known criteria AIC and BIC.

5.1. Simulations frameworks. We consider the model defined in (2.1) with f0 : [0, 1] → R.
The aim is to estimate f0. We consider the collection of models (S m)m∈M, where

S m = Vect{1I[ k−1
Dm

, k
Dm

[ such that 1 ≤ k ≤ Dm},

andM is the collection of regular partitions

m =

{[k − 1
Dm

,
k

Dm

[
, such that 1 ≤ k ≤ Dm,

}
,

where
Dm ≤

n
log n

.

The collection of estimators is defined in Lemma 4.1. Let us thus consider four penalties.
• the AIC criretion defined by

penAIC =
Dm

n
;

• the BIC criterion defined by

penBIC =
log n
2n

Dm;
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• the penalty proportional to the dimension as in (4.5) defined by

penlin = c ×
Dm

n
;

• and the penalty defined in (4.6) by

pen = µ × penshape(m).

penlin and pen are penalties depending on some unknown multiplicative constant (c and µ
respectively) to be calibrated. As previously said we will use the ”slope heuristics” introduced
in Birgéa nd Massart (2007) to calibrate the multiplicative constant. We have distinguished two
cases:

• The case where there exists mo ∈ M such that the true function belong to S mo i.e.
where f0 is piecewise constant,

Mod1: f0 = 0.51I[0,1/3) + 1I[1/3,0.5) + 21I[0.5,2/3) + 0.251I[2/3,1]

Mod2: f0 = 0.751I[0,1/4] + 0.51I[1/4,0.5) + 0.21I[0.5,3/4) + 0.31I[3/4,1].

• The second case, f0 does not belong to any S m, m ∈ M and is chosen in the following
way:

Mod3: f0(x) = sin (πx)
Mod4: f0(x) =

√
x.

In each case, the xi’s are simulated according to uniform distribution on [0, 1].
The Kullback-Leibler divergence is definitely not suitable to evaluate the quality of an esti-

mator. Indeed, given a model S m, there is a positive probability that on one of the interval I ∈ m
we have π(I)

f̂m
= 0 or π(I)

f̂m
= 1, which implies thatK(π(n)

f0
, π(n)

f̂m
) = +∞. So we will use the Hellinger

distance to evaluate the quality of an estimator.
Even if an oracle inequality seems of no practical use, it can serve as a benchmark to evaluate

the performance of any data driven selection procedure. Thus model selection performance of
each procedure is evaluated by the following benchmark

(5.8) C∗ :=
E
[
h2(P(n)

f0
,P(n)

f̂m̂
)
]

E
[

infm∈M h2(P(n)
f0
,P(n)

f̂m
)
] .

C∗ evaluate how far is the selected estimator to the oracle. The values of C∗ evaluated for
each procedure with different sample size n ∈ {100, 200, . . . , 1000} are reported in Figure 2 ,
Figure 4, Figure 3 and Figure 5. For each sample size n ∈ {100, 200, . . . , 1000}, the expectation
was estimated using mean over 1000 simulated datasets.
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5.2. Slope heuristics. The aim of this section is to show how the penalty in Theorem 4.1 can
be calibrated in practice using the main ideas of data-driven penalized model selection criterion
proposed by Birgé and Massart (2007). We calibrate penalty using ”slope heuristics” first intro-
duced and theoretically validated by Birgé and Massart (2007) in a gaussian homoscedastic set-
ting. Recently it has also been theoretically validated in the heteroscedastic random-design case
by Arlot (2009) and for least squares density estimation by Lerasle (2012). Several encouraging
applications of this method are developed in many other frameworks (see for instance in clus-
tering and variable selection for categorical multivariate data Bontemps and Toussile (2013), for
variable selection and clustering via Gaussian mixtures Maugis and Michel (2011), in multiple
change points detection Lebarbier (2005)). Some overview and implementation of the slope
heuristics can be find in Baudry et al. (2012).

We now describe the main idea of those heuristics, starting from that main goal of the model
selection, that is to choose the best estimator of f0 among a collection of estimators { f̂m}m∈M.
Moreover, we expect that this best estimator mimics the so-called oracle defined as (2.7). To
this aim, the great challenge is to build a penalty function such that the selected model m̂ is
nearly as good as the oracle. In the following we call the ideal penalty the penalty that leads to
the choice of m∗. Using that

K(P(n)
f0
,P(n)

f̂m
) = γ( f̂m) − γ( f0),

then, by definition, m∗ defined in (2.7) satisfies

m∗ = arg min
m∈M

[γ( f̂m) − γ( f0)] = arg min
m∈M

γ( f̂m).

The ideal penalty, leading to the choice of the oracle m∗, is thus [γ( f̂m) − γn( f̂m)], for m ∈ M.
As the matter of fact, by replacing penid( f̂m) by its value, we obtain

arg min
m∈M

[γn( f̂m) + penid( f̂m)] = arg min
m∈M

[γn( f̂m) + γ( f̂m) − γn( f̂m)]

= arg min
m∈M

[γ( f̂m)]

= m ∗ .

Of course this ideal penalty always selects the oracle model but depends on the unknown func-
tion f0 throught the sample distribution, since γ(t) = E f0[γn(t)]. A natural idea is to choose
pen(m) as close as possible to penid(m) for every m ∈ M. Now, we use that this ideal penalty
can be decomposed into

penid(m) = γ( f̂m) − γn( f̂m) = vm + v̂m + em,

where
vm = γ( f̂m) − γ( fm), v̂m = γn( fm) − γn( f̂m), and em = γ( fm) − γn( fm).

The slope heuristics relies on two points:
• The existence of a minimal penalty penmin(m) = v̂m such that when the penalty is

smaller than penmin the selected model is one of the most complex models. Whereas,
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penalties larger than penmin lead to a selection of models with ”reasonable” complex-
ity.
• Using concentration arguments, it is reasonable to consider that uniformly over M,
γn( fm) is close to its expectation which implies that em ≈ 0. In the same way, since
v̂m is a empirical version of vm, it is also reasonable to consider that vm ≈ v̂m. Ideal
penalty is thus approximately given by 2v̂m, and thus

penid(m) ≈ 2penmin(m).

In practice, v̂m can be estimated from the data provided that ideal penalty penid(.) = κidpenshape(.)
is known up to a multiplicative factor. A major point of the slope heuristics is that

κid

2
penshape(.)

is a good estimator of v̂m and this provides the minimal penalty.
Provided that pen = κ × penshape is known up to a multiplicative constant κ that is to be

calibrated, we combine the previously heuristic to the method usually known as dimension
jump method. In practice, we consider a grid κ1, . . . , κM, where each κ j leads to a selected
model m̂κi with dimension Dm̂κi

. The constant κmin which corresponds to the value such that
penmin = κmin × penshape, is estimated using the first point of the ”slope heuristics”. If Dm̂κ j

is
plotted as a function of κ j, κmin is such that Dm̂κ j

is ”huge” for κ < κmin and ”reasonably small”
for κ > κmin. So κmin is the value at the position of the biggest jump. For more details about this
method we refer the reader to Baudry et al. (2012) and Arlot and Massart (2009).

Figures 2 and 3 are the cases where the true function is piecewise constant. Figure 4 and Fig-
ure 5 are situations where the true function does not belong to any model in the given collection.
The performance of criteria depends on the sample size n. In these two situations we observe
that our two model selection procedures are comparable, and their performance increases with
n. While the performance of model selected by BIC decreases with n. Our criteria outperformed
the AIC for all n. The BIC criterion is better than our criteria for n ≤ 200. For 200 < n ≤ 400,
the performance of the model selected by BIC is quite the same as the performance of models
selected by our criteria. Finally for n > 400 our criteria outperformed the BIC.

Theoretical results and simulations raise the following question : why our criteria are better
than BIC for quite large values of n yet theoretical results are non asymptotic? To answer
this question we can say that, in simulations, to calibrate our penalties we have used ”slope
heuristics”, and those heuristic are based on asymptotic arguments (see Section 5.2).

6. Proofs

6.1. Notations and technical tools. Subsequently we will use the following notations. Denote
by ‖ f ‖n and 〈 f , g〉n the empirical euclidian norm and the inner product

‖ f ‖2n=
1
n

n∑
i=1

f 2(xi), and 〈 f , g〉n =
1
n

n∑
i=1

f (xi)g(xi).
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Figure 1. Different functions f0 to be estimated
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Figure 2. Model selection performance (C∗) as a function of sample size n,
with each penalty, Mod1.

Note that ‖ . ‖n is a semi norm on the space F of functions g : X −→ R, but is a norm in the
quotient space F /R associated to the equivalence relation R : g R h if and only if g(xi) = h(xi)
for all i ∈ {1, . . . , n}. It follows from (2.3) that γ defined in (2.4) can be expressed as the sum
of a centered empirical process and of the estimation criterion γn. More precisely, denoting by
~ε = (ε1, · · · , εn)T , with εi = Yi − E f0(Yi), for all f , we have

γ( f ) = γn( f ) +
1
n

n∑
i=1

εi f (xi) := γn( f ) + 〈~ε, f 〉n.(6.1)
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Figure 3. Model selection performance (C∗) as a function of sample size n,
with each penalty, Mod2.

Easy calculations show that for γ defined in (2.4) we have,

K(P(n)
f0
,P(n)

f ) =
1
n

∫
log

P(n)
f0

P(n)
f

 dP(n)
f0

= γ( f ) − γ( f0)

=
1
n

n∑
i=1

[
π f0(xi) log

(
π f0(xi)
π f (xi)

)
+ (1 − π f0(xi)) log

(
1 − π f0(xi)
1 − π f (xi)

)]
.

Let us recall the usual bounds (see Castellan (2003b)) for kullback-Leibler information:

Lemma 6.1. For positive densities p and q with respect to µ, if f = log(q/p), then

1
2

∫
f 2(1 ∧ e f )p dµ 6 K(p, q) 6

1
2

∫
f 2(1 ∨ e f )p dµ.
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Figure 4. Model selection performance (C∗) as a function of sample size n,
with each penalty, Mod3.

6.2. Proof of Proposition 3.1: By definition of f̂m, for all f ∈ S m∩L∞(C0), γn( f̂m)−γn( f ) 6 0.
We apply (6.1), with f = fm and f = f̂m,

γ( f̂m) − γ( f0) 6 γ( fm) − γ( f0) + 〈~ε, f̂m − fm〉n.

As usual, the main part of the proof relies on the study of the empirical process 〈~ε, f̂m − fm〉n.
Since f̂m − fm belongs to S m, f̂m − fm =

∑Dm
j=1 α jψ j, where {ψ1, . . . , ψDm}, is an orthonormal basis

of S m and consequently

〈~ε, f̂m − fm〉n =

Dm∑
j=1

α j〈~ε, ψ j〉n.
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Figure 5. Model selection performance (C∗) as a function of sample size n,
with each penalty, Mod4.

Applying Cauchy-Schwarz inequality we get

〈~ε, f̂m − fm〉n 6

√√√ Dm∑
j=1

α2
j

√√√ Dm∑
j=1

(
〈~ε, ψ j〉n

)2

= ‖ f̂m − fm‖n

√√√ Dm∑
j=1

1
n

n∑
i=1

εiψ j(xi)

2

.

We now apply Lemma 6.2 (See Section 7 for the proof of Lemma 6.2)

Lemma 6.2. Let Sm the model defined in (2.5) and {ψ1, . . . , ψDm} an orthonormal basis of the
linear span {φk, k ∈ m}. We also denote by Λm the set of β = (β1, ..., βD) such that fβ(.) =∑D

j=1 β jψ j(.) satisfies fβ ∈ Sm ∩ L∞(C0). Let β∗ be any minimizer of the function β→ γ( fβ) over
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Λm, we have

(6.2)
U2

0

2
‖ fβ − fβ∗‖2n ≤ γ( fβ) − γ( fβ∗),

whereU0 = eC0/(1 + eC0)2.

Then we have

〈~ε, f̂m − fm〉n 6

√√√ Dm∑
j=1

(
〈~ε, ψ j〉n

)2
√

2
U0

√
γ( f̂m) − γ( fm)

Now we use that for every positive numbers, a, b, x, ab 6 (x/2)a2 + [1/(2x)]b2, and infer that

γ( f̂m) − γ( f0) ≤ γ( fm) − γ( f0) +
x
U2

0

Dm∑
j=1

(
〈~ε, ψ j〉n

)2
+ (1/2x)(γ( f̂m) − γ( fm)).

For x > 1/2, it follows that

E f0[γ( f̂m) − γ( f0)] 6 γ( fm) − γ( f0) +
2x2

(2x − 1)U2
0

E f0

 Dm∑
j=1

(
〈~ε, ψ j〉n

)2
 .

We conclude the proof by using that

E f0

 Dm∑
j=1

(
〈~ε, ψ j〉n

)2
 6 Dm

4n
.

�

6.3. Proof of Theorem 3.1. By definition, for all m ∈ M,

γn( f̂m̂) + pen(m̂) 6 γn( f̂m) + pen(m) 6 γn( fm) + pen(m).

Applying (6.1) we have

(6.3) K(P(n)
f0
,P(n)

f̂m̂
) 6 K(P(n)

f0
,P(n)

fm
) + 〈~ε, f̂m̂ − fm〉n + pen(m) − pen(m̂).

It remains to study 〈~ε, f̂m̂ − fm〉n, using the following lemma, which is a modification of Lemma
1 in Durot et al. (2009).

Lemma 6.3. For every D, D′ and x > 0 we have

P

 sup
u∈
(

S D∩L∞(C0)+S D′∩L∞(C0)
) 〈~ε, u〉n‖ u ‖n

〉

√
D + D′

4n
+

√
5x
n

 6 exp (−x).
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Fix ξ > 0 and let Ωξ(m) denote the event

Ωξ(m) =
⋂

m′∈M

 sup
u∈
(

S m∩L∞(C0)+S m′∩L∞(C0)
) 〈~ε, u〉n‖ u ‖n

≤

√
Dm + Dm′

4n
+

√
5(Lm′Dm′ + ξ)/n

 .
Then we have

(6.4) P
(
Ωξ(m)

)
> 1 − Σ exp(−ξ).

See the Appendix for the proof of this lemma. Fix ξ > 0, applying Lemma 6.3, we infer that
on the event Ωξ(m),

〈~ε, f̂m̂ − fm〉n 6

√Dm + Dm̂

4n
+

√
5

Lm̂Dm̂ + ξ

n

 ‖ f̂m̂ − fm ‖n

6

√Dm + Dm̂

4n
+

√
5

Lm̂Dm̂ + ξ

n

 (‖ f̂m̂ − f0 ‖n + ‖ f0 − fm ‖n

)
6

√Dm̂

 1
√

4n
+

√
5Lm̂

n

 +

√
Dm

4n
+

√
5
ξ

n

 (‖ f̂m̂ − f0 ‖n + ‖ f0 − fm ‖n

)
.

Applying that 2xy 6 θx2 + θ−1y2, for all x > 0, y > 0, θ > 0, we get that on Ωξ(m) and for every
η ∈]0, 1[

〈~ε, f̂m̂ − fm〉n 6 (
1 − η

2
)
[
(1 + η) ‖ f̂m̂ − f0 ‖

2
n +(1 + η−1) ‖ f0 − fm ‖

2
n

]
+

1
2(1 − η)

(1 + η)Dm̂

 1
√

4n
+

√
5Lm̂

n

2

+ (1 + η−1)

√Dm

4n
+

√
5ξ
n

2
6

1 − η2

2
‖ f̂m̂ − f0 ‖

2
n +

η−1 − η

2
‖ f0 − fm ‖

2
n +

1 + η

2(1 − η)
Dm̂

 1
√

4n
+

√
5Lm̂

n

2

+
1 + η−1

1 − η

(Dm

4n
+

5ξ
n

)
.

If pen(m) >
(
λDm

(
1
2 +
√

5Lm

)2 )
/n, with λ > 0, we have

〈~ε, f̂m̂ − fm〉n 6
1 − η2

2
‖ f̂m̂ − f0 ‖

2
n +

η−1 − η

2
‖ f0 − fm ‖

2
n +

1 + η

2(1 − η)λ
pen(m̂) +

1 + η−1

(1 − η)λ
pen(m)

+
1 + η−1

1 − η
5ξ
n
.
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It follows from (6.3) that

K(P(n)
f0
,P(n)

f̂m̂
) 6 K(P(n)

f0
,P(n)

fm
) +

1 − η2

2
‖ f̂m̂ − f0 ‖

2
n +

η−1 − η

2
‖ f0 − fm ‖

2
n

+
1 + η

2(1 − η)λ
pen(m̂) +

1 + η−1

(1 − η)λ
pen(m) +

1 + η−1

1 − η
5ξ
n

+ pen(m) − pen(m̂).

Taking λ = (η + 1)/(2(1 − η)), we have

K(P(n)
f0
,P(n)

f̂m̂
) 6 K(P(n)

f0
,P(n)

fm
)

+
4λ

(2λ + 1)2 ‖ f̂m̂ − f0 ‖
2
n +

4λ
4λ2 − 1

‖ f0 − fm ‖
2
n +

6λ + 1
2λ − 1

pen(m) +
10λ(2λ + 1)

2λ − 1
ξ

n
.

Now we use the following lemma (see Lemma 6.1 in Kwemou (2012)) that allows to connect
empirical norm and Kullback-Leibler divergence.

Lemma 6.4. Under Assumptions (A1), for all m ∈ M and all t ∈ S m ∩ L∞(C0), we have

cmin‖t − f0‖
2
n 6 K(P(n)

f0
,P(n)

t ) 6 cmax‖t − f0‖
2
n.

where cmin and cmax are constants depending on C0 and c1.

Consequently

K(P(n)
f0
,P(n)

f̂m̂
) 6 C(cmin)

{
K(P(n)

f0
,P(n)

fm
) + pen(m)

}
+ C1(cmin)

ξ

n
,

where

C(cmin) = max

1 + 4λ
(4λ2−1)cmin

1 − 4λ
cmin(2λ+1)2

;
6λ+1
2λ−1

1 − 4λ
cmin(2λ+1)2

 and C1(cmin) =

10λ(2λ+1)
2λ−1

1 − 4λ
cmin(2λ+1)2

.

Thus we take λ such that

(6.5) 1 −
4λ

cmin(2λ + 1)2 > 0,

where cmin depends on the bound of the true function f0. By definition of Ωξ(m) and (6.4), there
exists a random variable V > 0 with P(V > ξ) 6 Σ exp (−ξ) and E f0(V) 6 Σ, such that

K(P(n)
f0
,P(n)

f̂m̂
) 6 C(cmin)

{
K(P(n)

f0
,P(n)

fm
) + pen(m)

}
+ C1(cmin)

V
n
,

which implies that for all m ∈ M,

E f0[K(P(n)
f0
,P(n)

f̂m̂
)] 6 C(cmin)

{
K(P(n)

f0
,P(n)

fm
) + pen(m)

}
+ C1(cmin)

Σ

n
.

This concludes the proof. �
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6.4. Proof of Proposition 4.1: Let fm, f̂m, π fm and π f̂m given in Lemma 4.1, proved in appendix.
In the following, Dm = |m|. For δ > 0, let Ωm(δ) be the event

Ωm(δ) =
⋂
J∈m


∣∣∣∣∣∣∣∣
π(J)

f̂m

π(J)
fm

− 1

∣∣∣∣∣∣∣∣ 6 δ
⋂

∣∣∣∣∣∣∣∣
1 − π(J)

f̂m

1 − π(J)
fm

− 1

∣∣∣∣∣∣∣∣ 6 δ
 .(6.6)

According to pythagore’s type identity and Lemma 4.1 we write

K(P(n)
f0
,P(n)

f̂m
) = K(P(n)

f0
,P(n)

fm
) +K(P(n)

fm
,P(n)

f̂m
)1IΩm(δ) +K(P(n)

fm
,P(n)

f̂m
)1IΩc

m(δ),

where

K(P(n)
fm
,P(n)

f̂m
) =

1
n

n∑
i=1

[
π fm(xi) log

(
π fm(xi)
π f̂m(xi)

)
+ (1 − π fm(xi)) log

(
1 − π fm(xi)
1 − π f̂m(xi)

)]
(6.7)

=
1
n

∑
J∈m

|J|

π(J)
fm

log

π
(J)
fm

π(J)
f̂m

 + (1 − π(J)
fm

) log

1 − π(J)
fm

1 − π(J)
f̂m


 .

The first step consists in showing that

1 − δ
2(1 + δ)2X

2
m1IΩm(δ) 6 K(P(n)

fm
,P(n)

f̂m
)1IΩm(δ) 6

1 + δ

2(1 − δ)2X
2
m1IΩm(δ),(6.8)

where

X2
m =

1
n

∑
J∈m

(
∑

k∈J εk)2

|J|π(J)
fm

[1 − π(J)
fm

]
, with

4ρ2Dm

n
6 E f0[X

2
m] 6

2Dm

n
.(6.9)

The second step relies on the proof of∣∣∣E f0

(
K(P(n)

fm
,P(n)

f̂m
)1IΩc

m(δ)

) ∣∣∣∣ 6 2 log
(
1
ρ

)
P[Ωc

m(δ)].(6.10)

The last step consists in showing that for ε > 0, since for all J ∈ m, |J| ≥ Γ[log(n)]2, where
Γ > 0 is an absolute constant, then we have

P[Ωc
m(δ)] 6 4|m| exp

(
−

δ2

2(1 + δ/3)
ρ2Γ[log(n)]2

)
≤
κ(ρ, δ,Γ, ε)

n(1+ε) .(6.11)

Gathering (6.8)-(6.11), we conclude that

E f0[K(P(n)
f0
,P(n)

f̂m
)] 6 K(P(n)

f0
,P(n)

fm
) +

(1 + δ)|m|
(1 − δ)2n

+ 2 log
(
1
ρ

)
P[Ωc

m(δ)]

6 K(P(n)
f0
,P(n)

fm
) +

(1 + δ)|m|
(1 − δ)2n

+
κ(ρ, δ,Γ, ε)

n(1+ε) .

We finish by proving (6.8), (6.9), (6.10) and (6.11).
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• Proof of (6.8) and (6.9) : Arguing as in Castellan (2003b) and using Lemma 6.1 we have

K(P(n)
fm
,P(n)

f̂m
) >

1
2n

∑
J∈m

|J|

π(J)
fm

1 ∧ π
(J)
f̂m

π(J)
fm

 log2

π
(J)
fm

π(J)
f̂m

 + (1 − π(J)
fm

)

1 ∧ 1 − π(J)
f̂m

1 − π(J)
fm

 log2

1 − π(J)
fm

1 − π(J)
f̂m




and

K(P(n)
fm
,P(n)

f̂m
) 6

1
2n

∑
J∈m

|J|

π(J)
fm

1 ∨ π
(J)
f̂m

π(J)
fm

 log2

π
(J)
fm

π(J)
f̂m

 + (1 − π(J)
fm

)

1 ∨ 1 − π(J)
f̂m

1 − π(J)
fm

 log2

1 − π(J)
fm

1 − π(J)
f̂m


 .

It follows that
1 − δ

2
V2(π fm , π f̂m)1IΩm(δ) 6 K(P(n)

fm
,P(n)

f̂m
)1IΩm(δ) 6

1 + δ

2
V2(π fm , π f̂m)1IΩm(δ),(6.12)

where V2(π fm , π f̂m) is defined by

(6.13) V2(π fm , π f̂m) =
1
n

∑
J∈m

|J|
[π(J)

f̂m
− π(J)

fm
]2

π(J)
fm

 log[π(J)
f̂m
/π(J)

fm
]

π(J)
f̂m
/π(J)

fm
− 1


2

+
1
n

∑
J∈m

|J|
[π(J)

f̂m
− π(J)

fm
]2

1 − π(J)
fm

 log[(1 − π(J)
f̂m

)/(1 − π(J)
fm

)]

(1 − π(J)
f̂m

)/(1 − π(J)
fm

) − 1


2

.

Now we use that, for all x > 0,

1
1 ∨ x

6
log(x)
x − 1

6
1

1 ∧ x
.(6.14)

Hence we infer that
1

(1 + δ)2X
2
m1IΩm(δ) 6 V2(π fm , π f̂m)1IΩm(δ) 6

1
(1 − δ)2X

2
m1IΩm(δ),

with X2
m defined in (6.9). This entails that (6.8) is proved. It remains now to check that

4ρ2|m|
n
6 E f0[X

2
m] 6

2|m|
n
.

According to Lemma 4.1 , for all partition J ∈ m and for any xi ∈ J,

π f̂m(xi) = π(J)
f̂m
, with π(J)

f̂m
=

1
|J|

∑
i∈J

Yi,

and π fm(xi) = π(J)
fm
, with π(J)

fm
=

1
|J|

∑
i∈J

π f0(xi).
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Consequently,

X2
m =

1
n

∑
J∈m

|J|
(
∑

k∈J εk)2∑
k∈J π f0(xk)[|J| −

∑
k∈J π f0(xk)]

=
1
n

∑
J∈m

(
∑

k∈J εk)2

|J|π(J)
fm

[1 − π(J)
fm

]
,

and finally

E f0(X
2
m) =

1
n

∑
J∈m

E

 (
∑

k∈J εk)2

|J|π(J)
fm

[1 − π(J)
fm

]

 =
1
n

∑
J∈m

 1

|J|π(J)
fm

[1 − π(J)
fm

]

∑
k∈J

Var (Yk) .

Consequently

E f0(X
2
m) =

1
n

∑
J∈m

∑
i∈J π f0(xi)(1 − π f0(xi))

|J|π(J)
fm

[1 − π(J)
fm

]
.

Now, according to Assumption (A2), and Lemma 4.1, for all partition m, all J ∈ m, and all
xi ∈ J

0 < ρ2 6 π f0(xi)(1 − π f0(xi)) 6 1/4, and 0 < ρ 6 π(J)
fm

and 0 < ρ 6 (1 − π(J)
fm

).

It follows that

4ρ2 6

∑
k∈J π f0(xk)(1 − π f0(xk))

|J|π(J)
fm

[1 − π(J)
fm

]
=

∑
k∈J π f0(xk)(1 − π f0(xk))

|J|π(J)
fm

+

∑
k∈J π f0(xk)(1 − π f0(xk))

|J|[1 − π(J)
fm

]
6 2,

and thus

4ρ2|m|
n
6

1
n

∑
J∈m

∑
i∈J π f0(xi)(1 − π f0(xi))

|J|π(J)
fm

[1 − π(J)
fm

]
6

2|m|
n
.

In other words,

4ρ2|m|
n
6 E f0(X

2
m) 6

2|m|
n
.

The ends up the proof of (6.8) and (6.9).
• Proof of (6.10) : We start from (6.7), apply Assumption (A2) and Lemma 4.1, to obtain that
and (6.10) is checked since

|E
(
K(P(n)

fm
,P(n)

f̂m
)1IΩc

m(δ)

)
| 6

1
n

n∑
i=1

E

∣∣∣∣∣∣
[
log

(
π fm(xi)
π f̂m(xi)

)
1IΩc

m(δ)

]∣∣∣∣∣∣ +
1
n

n∑
i=1

E

∣∣∣∣∣∣
[
log

(
(1 − π fm(xi))
(1 − π f̂m(xi))

)
1IΩc

m(δ)

]∣∣∣∣∣∣
6 2 log

(
1
ρ

)
P[Ωc

m(δ)].
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• Proof of (6.11): We come to the control of P f0[Ω
c
m(δ)]. Since

P[Ωc
m(δ)] 6

∑
J∈m

P


∣∣∣∣∣∣∣∣
π(J)

f̂m

π(J)
fm

− 1

∣∣∣∣∣∣∣∣ > δ
 +

∑
J∈m

P


∣∣∣∣∣∣∣∣
1 − π(J)

f̂m

1 − π(J)
fm

− 1

∣∣∣∣∣∣∣∣ > δ
 ,

by applying Lemma 4.1, we infer that

P


∣∣∣∣∣∣∣∣
π(J)

f̂m

π(J)
fm

− 1

∣∣∣∣∣∣∣∣ > δ
 = P

{∣∣∣∣∣∣
∑

k∈J εk∑
k∈J π f0(xk)

∣∣∣∣∣∣ > δ
}

= P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)

 ,
and

P


∣∣∣∣∣∣∣∣
1 − π(J)

f̂m

1 − π(J)
fm

− 1

∣∣∣∣∣∣∣∣ > δ
 = P

{∣∣∣∣∣∣
∑

k∈J εk∑
k∈J(1 − π f0(xk))

∣∣∣∣∣∣ > δ
}

= P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

(1 − π f0(xk))

 .
We write

P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)

 6 P

∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)(1 − π f0(xk))


and

P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

(1 − π f0(xk))

 6 P

∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)(1 − π f0(xk))

 .
Then we have

P[Ωc
m(δ)] 6 2

∑
J∈m

P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)(1 − π f0(xk))

 .
Now, we apply Bernstein Concentration Inequality (see Massart (2007) for example) to the right
hand side of previous inequality, starting by recalling this Bernstein inequality.

Theorem 6.1. Let Z1, · · · ,Zn be independent real valued random variables. Assume that there
exist some positive numbers v and c such that for all k > 2,

n∑
i=1

E
[
|Zi|

k
]
6

k!
2

vck−2.

Then for any positive z,

P

 n∑
i=1

(Zi − E(Zi) >
√

2vz + cz

 6 exp(−z), and P

 n∑
i=1

(Zi − E(Zi) > z

 6 exp
(
−

z2

2(v + cz)

)
.
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Especially, if |Zi| 6 b for all i, then

P

 n∑
i=1

(Zi − E(Zi) > z

 6 exp
(
−

z2

2(
∑n

i=1 E(Z2
i ) + bz/3)

)
.(6.15)

Applying (6.15) with z = δ
∑

k∈J π f0(xk)(1 − π f0(xk)), b = 1 and v =
∑

k∈J π f0(xk)(1 − π f0(xk)),
we get that

P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)(1 − π f0(xk))


is less than

2 exp

− δ2[
∑

k∈J π f0(xk)(1 − π f0(xk))]2

2
(∑

k∈J π f0(xk)(1 − π f0(xk)) + (δ/3)
∑

k∈J π f0(xk)(1 − π f0(xk))
) ,

and consequently

P


∣∣∣∣∣∣∣∑k∈J

εk

∣∣∣∣∣∣∣ > δ∑k∈J

π f0(xk)(1 − π f0(xk))

 6 2 exp

− δ2

2(1 + δ/3)

∑
k∈J

π f0(xk)(1 − π f0(xk))


6 2 exp

[
−

δ2

2(1 + δ/3)
|J|ρ2

]
.

Consequently,

P[Ωc
m(δ)] 6 4|m| exp(−∆ρ2Γ[log(n)]2), with ∆ =

δ2

2(1 + δ/3)
,

where Γ is given by (4.1). For ε > 0 and δ such that

δ2

2(1 + δ/3)
ρ2Γ log(n) > 2 + ε,(6.16)

using that |m| 6 n implies that

4|m| exp
(
−

δ2

2(1 + δ/3)
ρ2Γ[log(n)]2

)
6

κ

n(1+ε) .

And Result (6.11) follows.
6.5. Proof of Theorem 4.1.

By definition, for all m ∈ M,

γn( f̂m̂) + pen(m̂) 6 γn( f̂m) + pen(m) 6 γn( fm) + pen(m).

Applying Formula (6.1), we have

(6.17) γ( f̂m̂) − γ( f0) 6 γ( fm) − γ( f0) + 〈~ε, f̂m̂ − fm〉n + pen(m) − pen(m̂).
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Following Baraud (2000b) or Castellan (2003b), instead of bounding the supremum of the em-
pirical process 〈~ε, f̂m̂ − fm〉n, we split it in three terms. Let

γn(t) = γn(t) − E f0(γn(t)) = − < ~ε, f >n

with < ~ε, f >n defined in (6.1), and write

γ( f̂m̂) − γ( f0) 6 γ( fm) − γ( f0) + pen(m) − pen(m̂)
+γn( fm) − γn( f0) + γn( f0) − γn( fm̂) + γn( fm̂) − γn( f̂m̂).

In other words,

K(P(n)
f0
,P(n)

f̂m̂
) 6 K(P(n)

f0
,P(n)

fm
) + pen(m) − pen(m̂)

+γn( fm) − γn( f0) + γn( f0) − γn( fm̂) + γn( fm̂) − γn( f̂m̂).(6.18)

The proof of Theorem 4.1 can be decomposed in three steps :
(R-1) We prove that for ε > 0,

E f0
[
(γn( fm) − γn( f0))1IΩm f (δ)

]
6
κ′(ρ, δ,Γ, ε)

n(1+ε) .

(R-2) Let Ω1(ξ) be the event

Ω1(ξ) =
⋂

m′∈M

{
χ2

m′1IΩm f (δ) 6
2
n
|m′| +

16
n

(
1 +

δ

3

) √
(Lm′ |m′| + ξ)|m′| +

8
n

(
1 +

δ

3

)
(Lm′ |m′| + ξ)

}
,

where (Lm′)m′∈M satisfies Condition (4.2) and m f is given by Definition 4.1. For all
m′ inM we prove that on Ω1(ξ)(

γn( fm′) − γn( f̂m′)
)
1IΩm f (δ) 6

1
2n

(1 + δ

1 − δ

)
|m′|

[
2 +

(
1 +

δ

3

)(
2δ + 8Lm′ + 16

√
Lm′

)]
+

4ξ
n

(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)
+

1
1 + δ

K(P(n)
fm′
,P(n)

f̂m′
)1IΩm f (δ),(6.19)

and

(6.20) P(Ω1(ξ)c) 6 2Σe−ξ.

(R-3) Let Ω2(ξ) be the event

Ω2(ξ) =
⋂

m′∈M

[
(γn( f0) − γn( fm′)) 6 K(P(n)

f0
,P(n)

fm′
) − 2h2(P(n)

f0
,P(n)

fm′
) +

2
n

(L′m|m
′| + ξ)

]
.

We prove that, P(Ω2(ξ)c) 6 Σe−ξ.
Now, we will prove the result of Theorem 4.1 using (R-1), (R-2) and (R-3).
According to (6.18), we can write

K(P(n)
f0
,P(n)

f̂m̂
)1IΩm f (δ) 6 K(P(n)

f0
,P(n)

fm
) + pen(m) − pen(m̂)

+(γn( fm) − γn( f0))1IΩm f (δ) + (γn( f0) − γn( fm̂))1IΩm f (δ) + (γn( fm̂) − γn( f̂m̂)1IΩm f (δ).
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Combining (R-2) and (R-3) with m′ = m̂, we infer that on Ω1(ξ)
⋂

Ω2(ξ)

K(P(n)
f0
,P(n)

f̂m̂
)1IΩm f (δ) 6 K(P(n)

f0
,P(n)

fm
) + pen(m) − pen(m̂) + (γn( fm) − γn( f0))1IΩm f (δ)

+
1

2n

(1 + δ

1 − δ

)
|m̂|

[
2 +

(
1 +

δ

3

)(
2δ + 8Lm̂ + 16

√
Lm̂

)]
+ 2Lm̂

|m̂|
n

+
4ξ
n

[1
2

+
(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)]
+
[
K(P(n)

f0
,P(n)

fm̂
) − 2h2(P(n)

f0
,P(n)

fm̂
) +

1
1 + δ

K(P(n)
fm̂
,P(n)

f̂m̂
)
]
1IΩm f (δ).

This implies that

K(P(n)
f0
,P(n)

f̂m̂
)1IΩm f (δ) 6 K(P(n)

f0
,P(n)

fm
) + pen(m) − pen(m̂) + (γn( fm) − γn( f0))1IΩm f (δ)

+
|m̂|
n

[(1 + δ

1 − δ

)
+

(δ(1 + δ)2

1 − δ

)
+

( (1 + δ)2

1 − δ

)(
6Lm̂ + 8

√
Lm̂

)]
+

4ξ
n

[1
2

+
(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)]
+
[
K(P(n)

f0
,P(n)

fm̂
) − 2h2(P(n)

f0
,P(n)

fm̂
)) +

1
1 + δ

K(P(n)
fm̂
,P(n)

f̂m̂
)
]
1IΩm f (δ).

Since {(1 + δ

1 − δ

)
(1 + δ(1 + δ)) ∨

( (1 + δ)2

1 − δ

)}
6 C(δ) with C(δ) :=

(1 + δ

1 − δ

)3
,

we infer

K(P(n)
f0
,P(n)

f̂m̂
)1IΩm f (δ) 6 K(P(n)

f ,P
(n)
fm

) + pen(m) − pen(m̂) + (γn( fm) − γn( f0))1IΩm f (δ)

+
|m̂|
n

C(δ)
[
1 + 6Lm̂ + 8

√
Lm̂

]
+

4ξ
n

[1
2

+
(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)]
+
[
K(P(n)

f0
,P(n)

fm̂
) − 2h2(P(n)

f0
,P(n)

fm̂
) +

1
1 + δ

K(P(n)
fm̂
,P(n)

f̂m̂
)
]
1IΩm f (δ).

Using Pythagore’s type identity K(P f0 ,P f̂m̂) = K(P(n)
f0
,P(n)

fm̂
) + K(P(n)

fm̂
,P(n)

f̂m̂
) (see Equation (7.42)

in Massart (2007)) we have

K(P(n)
f0
,P(n)

f̂m̂
)1IΩm f (δ) 6 K(P(n)

f ,P
(n)
fm

) + pen(m) − pen(m̂) + (γn( fm) − γn( f0))1IΩm f (δ)

+
|m̂|
n

C(δ)
[
1 + 6Lm̂ + 8

√
Lm̂

]
+

4ξ
n

[1
2

+
(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)]
+
[
K(P(n)

f0
,P(n)

f̂m̂
) − 2h2(P(n)

f0
,P(n)

fm̂
) −

δ

1 + δ
K(P(n)

fm̂
,P(n)

f̂m̂
)
]
1IΩm f (δ).

Now, we successively use
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(i) the relation between Kullback-Leibler information and the Hellinger distanceK(P(n)
fm̂
,P(n)

f̂m̂
) ≥

2h2(P(n)
fm̂
,P(n)

f̂m̂
) (see Lemma 7.23 in Massart (2007)),

(ii) and inequality h2(P(n)
f0
,P(n)

f̂m̂
) 6 2[h2(P(n)

f0
,P(n)

fm̂
) + h2(P(n)

fm̂
,P(n)

f̂m̂
)].

Consequently, on Ω1(ξ)
⋂

Ω2(ξ)

δ

1 + δ
h2(P(n)

f0
,P(n)

f̂m̂
)1IΩm f (δ) 6 K(P(n)

f0
,P(n)

fm
) + pen(m) − pen(m̂) + (γn( fm) − γn( f0))1IΩm f (δ)

+
|m̂|
n

C(δ)
[
1 + 6Lm̂ + 8

√
Lm̂

]
+

4ξ
n

[1
2

+
(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)]
.

Since pen(m̂) ≥ µ|m̂|
[
1 + 6Lm̂ + 8

√
Lm̂

]
/n, by taking µ = C(δ) yields that on Ω1(ξ)

⋂
Ω2(ξ)

h2(P f0 ,P f̂m̂)1IΩm f (δ) 6
2µ1/3

µ1/3 − 1

(
K(P(n)

f0
,P(n)

fm
) + pen(m) + (γn( fm) − γn( f0))1IΩm f (δ)

)
+
ξ

n
C1(µ).

Then, using that
P(Ω1(ξ)c ∪Ω2(ξ)c) 6 3Σe−ξ,

we deduce that P(Ω1(ξ) ∩ Ω2(ξ)) ≥ 1 − 3Σe−ξ. We now integrating with respect to ξ, and use
(R-1) to write that

E f0

[
h2(P f0 ,P f̂m̂)1IΩm f (δ)

]
6

2µ1/3

µ1/3 − 1

(
K(P(n)

f0
,P(n)

fm
) + pen(m)

)
+
κ1(ρ, µ,Γ, ε)

n(1+ε) +
C2(µ,Σ)

n
.

Furthermore, since h2(P f0 ,P f̂m̂) 6 1, by applying Inequality (6.11) we have,

E f0

[
h2(P f0 ,P f̂m̂)1IΩc

m f (δ)

]
≤
κ2(ρ, µ,Γ, ε)

n(1+ε) .

Hence we conclude that

E f0

[
h2(P f0 ,P f̂m̂)

]
6

2µ1/3

µ1/3 − 1

(
K(P(n)

f0
,P(n)

fm
) + pen(m)

)
+
κ3(ρ, µ,Γ, ε)

n(1+ε) +
C2(µ,Σ)

n
,

and minimizing overM leads to the result of Theorem 4.1.
We now come to the proofs of (R-1), (R-2) and (R-3).
• Proof of (R-1)
We know that∣∣∣∣E f0

[
(γn( fm) − γn( f0))1IΩm f (δ)

]∣∣∣∣ =
∣∣∣∣E f0

[
(γn( fm) − γn( f0))1IΩc

m f (δ)

]∣∣∣∣
≤ E f0

[1
n

n∑
i=1

{∣∣∣∣εi log{
π fm(xi)
π f0(xi)

}

∣∣∣∣ +
∣∣∣∣εi log{

1 − π fm(xi)
1 − π f0(xi)

}

∣∣∣∣}1IΩc
m f (δ)

]
≤ 2 log

{
1
ρ

}
P(Ωc

m f
(δ)).
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We conclude the proof of (R-1) by using Inequality (6.11), which implies that∣∣∣∣E f0

[
(γn( fm) − γn( f0))1IΩm f (δ)

]∣∣∣∣ ≤ 2 log
{

1
ρ

}
κ(ρ, δ,Γ, ε)

n(1+ε) =
κ′(ρ, δ,Γ, ε)

n(1+ε) .

• Proof of (R-2)
We start by the proof of (6.19)

γn( fm′) − γn( f̂m′) = −
1
n

n∑
i=1

{
εi log

(π fm′ (xi)
π f̂m′ (xi)

)
− εi log

(1 − π fm′ (xi)
1 − π f̂m′ (xi)

)}

= −
1
n

∑
J∈m′

(∑
i∈J

εi

)[ √
|J|π(J)

fm′√
|J|π(J)

fm′

log
(π(J)

fm′

π(J)
f̂m′

)
−

√
|J|1 − π(J)

fm′√
|J|(1 − π(J)

fm′
)

log
(1 − π(J)

fm′

1 − π(J)
f̂m′

)]
.

By Cauchy-Schwarz inequality, we have

γn( fm′) − γn( f̂m′) ≤

√√√√
1
n

∑
J∈m′
|J|

[
π(J)

fm′
log2

(π(J)
f̂m′

π(J)
fm′

)
+ (1 − π(J)

fm′
) log2

(1 − π(J)
f̂m′

1 − π(J)
fm′

)]

×

√√√√√
1
n

∑
J∈m′

[(∑i∈J εi

)2

|J|π(J)
fm′

+

(∑
i∈J εi

)2

|J|(1 − π(J)
fm′

)

]
,

and in other words

γn( fm′) − γn( f̂m′) ≤
√
X2

m′ ×

√
V2(π fm′ , π f̂m′ ),

where X2
m′ and V2(π fm′ , π f̂m′ ) are defined respectively in (6.9) and (6.13) . Using both that in-

equality 2xy 6 θx2 + θ−1y2, for all x > 0, y > 0 with θ = (1 + δ)/(1 − δ), and Inequality (6.12),
we obtain on Ωm f (δ) that,

γn( fm′) − γn( f̂m′)) ≤
1
2

(1 + δ

1 − δ

)
χ2

m′ +
1

1 + δ
K(P(n)

fm′
,P(n)

f̂m′
).

Consequently, on Ω1(ξ)

(γn( fm′) − γn( f̂m′))1IΩm f (δ) ≤
1
2n

(1 + δ

1 − δ

)[
2|m′| + 16

(
1 +

δ

3

) √
(Lm′ |m′| + ξ)|m′| + 8

(
1 +

δ

3

)
(Lm′ |m′| + ξ)

]
+

1
1 + δ

K(P(n)
fm′
,P(n)

f̂m′
)1IΩm f (δ).
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Using inequalities |x + y|1/2 6 |x|1/2 + |y|1/2 and 2xy 6 θx2 + θ−1y2 with θ = δ/4, we infer that
(6.19) follows since

γn( fm′) − γn( f̂m′))1IΩm f (δ) ≤
1

2n

(1 + δ

1 − δ

)[
2|m′| +

(
1 +

δ

3

)(
16

√
Lm′ |m′| + 8Lm′ |m′| + 2δ|m′|

)
+8ξ

(
1 +

δ

3

)
(1 +

4
δ

)
]

+
1

1 + δ
K(P(n)

fm′
,P(n)

f̂m′
)1IΩm f (δ)

≤
1
2n

(1 + δ

1 − δ

)
|m′|

[
2 +

(
1 +

δ

3

)(
2δ + 8Lm′ + 16

√
Lm′

)]
+

4ξ
n

(1 + δ

1 − δ

)(
1 +

δ

3

)(
1 +

4
δ

)
+

1
1 + δ

K(P(n)
fm′
,P(n)

f̂m′
)1IΩm f (δ).

• Proof of (6.20) :
Write X2

m′ =
∑

J∈m′{Z1,J + Z2,J}, where

Z1,J =
1
n

(
∑

k∈J εk)2

|J|π(J)
fm′

and Z2,J =
1
n

(
∑

k∈J εk)2

|J|(1 − π(J)
fm′

)
.

We will control
∑

J∈m′ Z1,J and
∑

J∈m′ Z2,J separately. In order to use Bernstein inequality (see
Theorem 6.1), we need an upper bound of

∑
J∈m′ E[Zp

1,J1IΩm f (δ)], for every p ≥ 2. By definition

E[Zp
1,J1IΩm f (δ)] =

1(
n|J|π(J)

fm′

)p

∫ ∞

0
2px2p−1P

({
|
∑
k∈J

εk| ≥ x
}
∩Ωm f (δ)

)
dx.

For every m′ constructed on the grid m f , for all J ∈ m′, on Ωm f (δ) ∩
{
x 6 |

∑
k∈J εk|

}
, we have

x 6 |
∑
k∈J

εk| 6 δ
∑
i∈J

π f0(xi).

Combining the previous inequality, the Bernstein inequality (6.15) with the fact that εk 6 1, we
infer that

E[Z p
1,J1IΩm f (δ)] ≤

1(
n
∑

k∈J π f0(xk)
)p

∫ δ
∑

k∈J π f0 (xk)

0
2px2p−1P

(
|
∑
k∈J

εk| ≥ x
)
dx

≤
1(

n
∑

k∈J π f0(xk)
)p

∫ δ
∑

i∈J π f0 (xi)

0
4px2p−1 exp

(
−

x2

2
(

x
3 +

∑
k∈J π f0(xk)

))dx

≤
1(

n
∑

k∈J π f0(xk)
)p

∫ δ
∑

i∈J π f0 (xi)

0
4px2p−1 exp

(
−

x2

2
(
1 + δ

3

)∑
k∈J π f0(xk)

)
dx

≤
1
np 2p+1(1 +

δ

3
)p p

∫ ∞

0
tp−1 exp(−t)dt

≤
1
np 2p+1 p(1 +

δ

3
)p(p!).
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Consequently ∑
J∈m′
E[Z p

1,J1IΩm f (δ)] 6
1
np 2p+1 p(1 +

δ

3
)p(p!) × |m′|.

Now, since p 6 2p−1, we have

∑
J∈m′
E[Zp

1,J1IΩm f (δ)] 6
p!
2
×

[32
n2 (1 +

δ

3
)2|m′|

]
×

[4
n

(1 +
δ

3
)
]p−2

.

Using Bernstein inequality and that E
[∑

J∈m′ Z1,J)
]
6 |m′|/n, we have that for every positive x

P
( ∑

J∈m′
Z1,J1IΩm f (δ) ≥

|m′|
n

+
8
n

(1 +
δ

3
)
√

x|m′| +
4
n

(1 +
δ

3
)x

)
6 exp(−x).

In the same way we prove that

P
( ∑

J∈m′
Z2,J1IΩm f (δ) ≥

|m′|
n

+
8
n

(1 +
δ

3
)
√

x|m′| +
4
n

(1 +
δ

3
)x

)
6 exp(−x).

Hence

P
(
X2

m′1IΩm f (δ) ≥
2|m′|

n
+

16
n

(1 +
δ

3
)
√

x|m′| +
8
n

(1 +
δ

3
)x

)
6 2 exp(−x),

and we conclude that P(Ωc
1(ξ)) 6 2

∑
m′ exp(−L′m|m

′| − ξ) = 2Σe−ξ. This ends the proof of (R-2).
• Proof of (R-3)

Recall that γn( f ) = γn( f ) − E(γn( f )) for every f . According to Markov inequality, for b > 0,

P((γn( f0) − γn(g)) ≥ b) = P
(

exp
(n
2

(γn( f0) − γn(g))
)
≥ exp

(nb
2

))
≤ exp

(−nb
2

)
E
[

exp
(n
2

(γn( f0) − γn(g))
)]

= exp
[−nb

2
+ logE

[
exp

(n
2

(
γn( f0) − γn(g)

)
+

n
2
E
[
γn(g) − γn( f0)

])]
≤ exp

[−nb
2

+
n
2
K(P(n)

f0
,P(n)

g ) + logE
[

exp
(n
2

(
γn( f0) − γn(g)

))]]
.
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Now,

logE
[

exp
(n
2

(
γn( f0) − γn(g)

))]
= logE

[
exp

(1
2

n∑
i=1

Yi log(
πg(xi)
π f0(xi)

) + (1 − Yi) log(
1 − πg(xi)
1 − π f0(xi)

)
)]

= logE
[
Πn

i=1

{( πg(xi)
π f0(xi)

)Yi/2
×

( 1 − πg(xi)
1 − π f0(xi)

)(1−Yi)/2}]
= log Πn

i=1

{√ πg(xi)
π f0(xi)

π f0(xi) +

√
1 − πg(xi)
1 − π f0(xi)

(1 − π f0(xi))
}

=

n∑
i=1

log
{ √

πg(xi)π f0(xi) +
√

(1 − πg(xi))(1 − π f0(xi))
}
.

In other words we have

logE
[

exp
(n
2

(
γn( f0) − γn(g)

))
=

n∑
i=1

log
{
1 −

1
2

[( √
π f0(xi) −

√
πg(xi)

)2
+

( √
1 − π f0(xi) −

√
1 − πg(xi)

)2]}
.

This implies that

logE
[

exp
(n
2

(
γn( f0) − γn(g)

))]
≤

n∑
i=1

−
1
2

[( √
π f0(xi) −

√
πg(xi)

)2
+

( √
1 − π f0(xi) −

√
1 − πg(xi)

)2]
= −nh2(P f0 ,Pg).

Consequently

P(γn( f0) − γn(g) ≥ b) 6 exp
[−nb

2
+

n
2
K(P(n)

f0
,P(n)

g ) − nh2(P(n)
f0
,P(n)

g )
]
,

and, if we choose for positive x,

b =
2x
n

+K(P(n)
f0
,P(n)

g ) − 2h2(P(n)
f0
,P(n)

g ) > 0,

we have,

P
(
γn( f0) − γn(g) ≥

2x
n

+K(P(n)
f0
,P(n)

g ) − 2h2(P(n)
f0
,P(n)

g )
)
6 exp(−x).

We conclude that P(Ωc
2(ξ)) 6

∑
m′ exp(−L′m|m

′| − ξ) ≤ Σe−ξ, which ends the proof of (R-3). �

7. Appendix

7.1. Proof of Lemma 4.1. By definition

fm = arg min
f∈S m

 n∑
i=1

log(1 + exp( f (xi))) − π f0(xi) f (xi)

 .
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For all f ∈ S m, for all J ∈ m and for all x ∈ J, we have f (x) = f (J). Hence fm(x) = f
(J)
m for all x

in J, and for all J in m, we aim at finding f
(J)
m such that

f
(J)
m = arg min

f (J)

|J| log(1 + exp( f (J))) −
∑
i∈J

π f0(xi) f (J)


where |J| = card{i ∈ {1, ..., n}; xi ∈ J}. Easy calculations show that he coefficient f

(J)
m satisfies

|J|
exp( f

(J)
m )

1 + exp( f
(J)
m )
−

∑
i∈J

π f0(xi) = 0,

that is

f
(J)
m = log

( ∑
i∈J π f0(xi)

|J|(1 −
∑

i∈J π f0(xi)/|J|)

)
.(7.1)

Consequently, π fm defined as in (2.2) satisfies that π fm(x) = π(J)
fm

for all x ∈ J, where

π(J)
fm

=
1
|J|

∑
i∈J

π f0(xi),

and hence π fm = arg mint∈S m ‖ t − π f0 ‖n is the usual projection of π f0 on to S m =< Φ j, j ∈ m > .

In the same way, f̂m defined by (4.10) satisfies f̂m(t) = f̂ (J)
m for all t ∈ J, where

f̂ (J)
m = log

( ∑
i∈J Yi

|J|(1 −
∑

i∈J Yi/|J|)

)
.

In other words, π f̂m , defined as π f with f replaced by π f̂m , satisfies π f̂m(x) = π(J)
f̂m

, for all x ∈ J,
with

π(J)
f̂m

=
1
|J|

∑
i∈J

Yi.

7.2. Proof of Lemma 6.2. In the following, for the sake of notation simplicity, we will use
γ(β) for γ( fβ). A second-order Taylor expansion of the function γ() around β∗ gives for any
β ∈ Λm

γ(β) = γ(β∗) + ∇βγ(β∗)(β − β∗)

+

∫ 1

0
(1 − t)

∑
i1+···+iD=2

2!
i1! . . . iD!

(β1 − β
∗
1)i1 . . . (βD − β

∗
D)iD ∂γ2

∂β1 . . . ∂βD
(β∗ + t(β − β∗))dt.
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Easy calculation shows that∑
i1+···+iD=2

2!
i1! . . . iD!

(β1 − β
∗
1)i1 . . . (βD − β

∗
D)iD ∂γ2

∂β1 . . . ∂βD
(β∗ + t(β − β∗))

=

D∑
j=1

1
n

n∑
i=1

ψ2
j(xi)(β j − β

∗
j)

2π
(

fβ∗+t(β−β∗)(xi)
) [

1 − π
(

fβ∗+t(β−β∗)(xi)
)]

+ 2
∑
l,k

1
n

n∑
i=1

ψl(xi)ψk(xi)(βl − β
∗
l )(βk − β

∗
k)π

(
fβ∗+t(β−β∗)(xi)

) [
1 − π

(
fβ∗+t(β−β∗)(xi)

)]
=

1
n

n∑
i=1

π
(

fβ∗+t(β−β∗)(xi)
) [

1 − π
(

fβ∗+t(β−β∗)(xi)
)]

( fβ(xi) − fβ∗(xi))2.

This implies that

γ(β) ≥ γ(β∗) + ∇βγ(β∗)(β − β∗) +
U2

0

2
‖ fβ − fβ∗‖2n.

Since β∗ is the minimizer of γ(.) over the set Λm, we have ∇βγ(β∗)(β − β∗) ≥ 0 for all β ∈ Λm.
Thus the result follows.

7.3. Proof of Lemma 6.3. Let S D and S D′ two vector spaces of dimension D and D′ respec-
tively. Set S = S D ∩ L∞(C0) + S D′ ∩ L∞(C0) and ~ε′ be an independent copie of ~ε. Set

(7.2) Z = sup
u∈S

〈~ε, u〉n
‖ u ‖n

, and for all i = 1, . . . , n, Z(i) = sup
u∈S

1
‖ u ‖n

1
n

∑
k,i

εku(xk) + ε′iu(xi)

 .
By Cauchy-Schwarz Inequality the supremum in (7.2) is achieved at ΠS (~ε). Consequently,

Z − Z(i) 6
(εi − ε

′
i)(ΠS (~ε)(xi)

n ‖ ΠS (~ε) ‖n
, and E f0[(Z − Z(i))2|~ε] ≤ E f0

[
(εi − ε

′
i)

2[ΠS (~ε)(xi)]2

n2 ‖ ΠS (~ε) ‖2n
|~ε

]
with

E f0

[
(εi − ε

′
i)

2[ΠS (~ε)(xi)]2

n2 ‖ ΠS (~ε) ‖2n
|~ε

]
=

[ΠS (~ε)(xi)]2

n2 ‖ ΠS (~ε) ‖2n
E f0

[
(εi − ε

′
i)

2|~ε
]

=
[ΠS (~ε)(xi)]2

n2 ‖ ΠS (~ε) ‖2n

(
ε2

i + E f0(ε
2
i )
)
≤

5[ΠS (~ε)(xi)]2

4n2 ‖ ΠS (~ε) ‖2n
.

This implies that
n∑

i=1

E f0[(Z − Z(i))21IZ>Z(i) |~ε] ≤
5

4n
.

We now apply Lemma 7.1 from Boucheron et al. (2004)), that is recalled here.
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Lemma 7.1. Let X1, . . . , Xn independent random variables taking values in a measurable space
X. Denote by Xn

1 the vector of these n random variables. Set Z = f (X1, . . . , Xn) and Z(i) =

f (X1, . . . , Xi−1, X′i , Xi+1, . . . , Xn), where X′1, . . . , X
′
n denote independent copies of X1, . . . , Xn and

f : Xn → R some measurable function. Assume that there exists a positive constant c such that,
E f0

[∑n
i=1(Z − Z(i))21Z>Z(i) |Xn

1

]
6 c. Then for all t > 0,

P f0(Z > E f0(Z) + t) 6 e−t2/4c.

Applying Lemma 7.1 to Z defined in (7.2), we obtain that for all x > 0,

P

sup
u∈S

〈~ε, u〉n
‖ u ‖n

> E f0

[
sup
u∈S

〈~ε, u〉n
‖ u ‖n

]
+

√
5x
n

 6 exp (−x).

Let {ψ1, . . . , ψD+D′} be an orthonormal basis of S D + S D′ . Using Jensen’s Inequality, we write

E f0

[
sup
u∈S

〈~ε, u〉n
‖ u ‖n

]
= E f0(‖ ΠS (~ε) ‖n) = E f0


D+D′∑

k=1

(〈~ε, ψk〉n)2


1/2

≤

D+D′∑
k=1

E f0(〈~ε, ψk〉n)2


1/2

6

√
D + D′

4n
.

This concludes the proof of Lemma 6.3.
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