On $k$-simplexes in $(2k-1)$-dimensional vector spaces over finite fields - Archive ouverte HAL Access content directly
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2009

On $k$-simplexes in $(2k-1)$-dimensional vector spaces over finite fields

Abstract

We show that if the cardinality of a subset of the $(2k-1)$-dimensional vector space over a finite field with $q$ elements is $\gg q^{2k-1-\frac{1}{ 2k}}$, then it contains a positive proportional of all $k$-simplexes up to congruence.
Nous montrons que si la cardinalité d'un sous-ensemble de l'espace vectoriel à $(2k-1)$ dimensions sur un corps fini à $q$ éléments est $\gg q^{2k-1-\frac{1}{ 2k}}$, alors il contient une proportion non-nulle de tous les $k$-simplexes de congruence.
Fichier principal
Vignette du fichier
dmAK0173.pdf (201.58 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01185393 , version 1 (20-08-2015)

Identifiers

Cite

Le Anh Vinh. On $k$-simplexes in $(2k-1)$-dimensional vector spaces over finite fields. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.871-880, ⟨10.46298/dmtcs.2701⟩. ⟨hal-01185393⟩

Collections

TDS-MACS
54 View
735 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More