Geometry and complexity of O'Hara's algorithm - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2009

Geometry and complexity of O'Hara's algorithm

Résumé

In this paper we analyze O'Hara's partition bijection. We present three type of results. First, we see that O'Hara's bijection can be viewed geometrically as a certain scissor congruence type result. Second, we present a number of new complexity bounds, proving that O'Hara's bijection is efficient in most cases and mildly exponential in general. Finally, we see that for identities with finite support, the map of the O'Hara's bijection can be computed in polynomial time, i.e. much more efficiently than by O'Hara's construction.
Fichier principal
Vignette du fichier
dmAK0145.pdf (276.42 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185384 , version 1 (20-08-2015)

Identifiants

Citer

Matjaž Konvalinka, Igor Pak. Geometry and complexity of O'Hara's algorithm. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.537-548, ⟨10.46298/dmtcs.2692⟩. ⟨hal-01185384⟩

Collections

TDS-MACS
98 Consultations
701 Téléchargements

Altmetric

Partager

More