Single approximation for Biobjective Max TSP - Archive ouverte HAL
Article Dans Une Revue Theoretical Computer Science Année : 2013

Single approximation for Biobjective Max TSP

Cristina Bazgan
  • Fonction : Auteur
Laurent Gourvès
  • Fonction : Auteur
Jérôme Monnot
Fanny Pascual
  • Fonction : Auteur
  • PersonId : 855950

Résumé

We mainly study the Max TSP with two objective functions. We propose an algorithm which returns a single Hamiltonian cycle with performance guarantee on both objectives. The algorithm is analyzed in three cases. When both (respectively, at least one) objective function(s) fulfill(s) the triangle inequality, the approximation ratio is $\frac{5}{12}-\varepsilon \approx 0.41$ (respectively, $\frac{3}{8} - \varepsilon$). When the triangle inequality is not assumed on any objective function, the algorithm is $\frac{1+2\sqrt{2}}{14} - \varepsilon \approx 0.27$-approximate.

Dates et versions

hal-01185099 , version 1 (19-08-2015)

Identifiants

Citer

Cristina Bazgan, Laurent Gourvès, Jérôme Monnot, Fanny Pascual. Single approximation for Biobjective Max TSP. Theoretical Computer Science, 2013, 478, pp.41-50. ⟨10.1016/j.tcs.2013.01.021⟩. ⟨hal-01185099⟩
70 Consultations
0 Téléchargements

Altmetric

Partager

More