The number of distinct values of some multiplicity in sequences of geometrically distributed random variables - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2005

The number of distinct values of some multiplicity in sequences of geometrically distributed random variables

Résumé

We consider a sequence of $n$ geometric random variables and interpret the outcome as an urn model. For a given parameter $m$, we treat several parameters like what is the largest urn containing at least (or exactly) $m$ balls, or how many urns contain at least $m$ balls, etc. Many of these questions have their origin in some computer science problems. Identifying the underlying distributions as (variations of) the extreme value distribution, we are able to derive asymptotic equivalents for all (centered or uncentered) moments in a fairly automatic way.
Fichier principal
Vignette du fichier
dmAD0122.pdf (215.91 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184030 , version 1 (12-08-2015)

Identifiants

Citer

Guy Louchard, Helmut Prodinger, Mark Daniel Ward. The number of distinct values of some multiplicity in sequences of geometrically distributed random variables. 2005 International Conference on Analysis of Algorithms, 2005, Barcelona, Spain. pp.231-256, ⟨10.46298/dmtcs.3358⟩. ⟨hal-01184030⟩

Collections

TDS-MACS
86 Consultations
728 Téléchargements

Altmetric

Partager

More