Big image of Galois representations associated with finite slope $p$-adic families of modular forms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Big image of Galois representations associated with finite slope $p$-adic families of modular forms

Résumé

We consider the Galois representation associated with a finite slope $p$-adic family of modular forms. We prove that the Lie algebra of its image contains a congruence Lie subalgebra of a non-trivial level. We describe the largest such level in terms of the congruences of the family with $p$-adic CM forms.
Fichier principal
Vignette du fichier
Conti_Iovita_Tilouine_Big_Image.pdf (489.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01183284 , version 1 (16-08-2015)
hal-01183284 , version 2 (10-12-2016)

Identifiants

Citer

Andrea Conti, Adrian Iovita, Jacques Tilouine. Big image of Galois representations associated with finite slope $p$-adic families of modular forms. 2015. ⟨hal-01183284v2⟩
203 Consultations
352 Téléchargements

Altmetric

Partager

More