Fonctions complètement multiplicatives de somme nulle - Archive ouverte HAL
Article Dans Une Revue Expositiones Mathematicae Année : 2017

Fonctions complètement multiplicatives de somme nulle

Résumé

Completely multiplicative functions whose sum is zero ($CMO$). The paper deals with $CMO$, meaning completely multiplicative ($CM$) functions $f$ such that $f(1)=1$ and $\sum\limits_1^\infty f(n)=0$. $CM$ means $f(ab)=f(a)f(b)$ for all $(a,b)\in \N^{*2}$, therefore $f$ is well defined by the $f(p)$, $p$ prime. Assuming that $f$ is $CM$, give conditions on the $f(p)$, either necessary or sufficient, both is possible, for $f$ being $CMO$ : that is the general purpose of the authors. The $CMO$ character of $f$ is invariant under slight modifications of the sequence $(f(p))$ (theorem~3). The same idea applies also in a more general context (theorem~4). After general statements of that sort, including examples of $CMO$ (theorem~5), the paper is devoted to ``small'' functions, that is, functions of the form $\frac{f(n)}{n}$, where the $f(n)$ are bounded. Here is a typical result : if $|f(p)|\le 1$ and $Re\, f(p)\le0$ for all $p$, a necessary and sufficient condition for $\big(\frac{f(n)}{n}\big)$ to be $CMO$ is $\sum \, Re\, f(p)/p=-\infty$ (theorem~8). Another necessary and sufficient condition is given under the assumption that $|1+f(p)|\le 1$ and $f(2)\not=-2$ (theorem~7). A third result gives only a sufficient condition (theorem~9). The three results apply to the particular case $f(p)=-1$, the historical example of Euler. Theorems 7 and 8 need auxiliary results, coming either from the existing literature (Hal\'asz, Montgomery--Vaughan), or from improved versions of classical results (Ingham, Ska\l ba) about $f(n)$ under assumptions on the $f*1(n)$, * denoting the multiplicative convolution (theorems~10~and~11).
Fichier principal
Vignette du fichier
CMOV16.pdf (244.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01177065 , version 1 (16-07-2015)

Identifiants

Citer

Jean-Pierre Kahane, Eric Saias. Fonctions complètement multiplicatives de somme nulle. Expositiones Mathematicae, 2017, 35 (4), pp.364--389. ⟨10.1016/j.exmath.2017.05.002⟩. ⟨hal-01177065⟩
226 Consultations
469 Téléchargements

Altmetric

Partager

More